利用CompactRIO和LabVIEW控制心臟模擬器
3D模擬器
作者:
Dr. David Keeling - School of Mechanical Engineering, University of Leeds
Mr Ali Alazmani - School of Mechanical Engineering, University of Leeds.
Prof. M. Levesley - School of Mechanical Engineering, University of Leeds
Dr. P. Walker - School of Mechanical Engineering, University of Leeds
Dr. K. Watterson - Leeds General Infirmary
Dr. O. Jaber - Leeds General Infirmary
行業(yè):
生命科學, 機器視覺/成像設備, 醫(yī)學/ 醫(yī)療器械
產(chǎn)品:
LabVIEW, 圖像開發(fā)工具包, CompactRIO, cRIO-9116, cRIO-9022
挑戰(zhàn):
開發(fā)一個逼真、可靠和可重新配置測試環(huán)境,幫助最新的心臟輔助裝置進行提高和改善,而無需進行動物試驗。
解決方案:
利用NI CompactRIO創(chuàng)建一個獨立的硬件在環(huán)(HIL)測試環(huán)境。該測試環(huán)境可以把人工機械心臟與循環(huán)血流模型相結(jié)合,創(chuàng)造一個包含真實血液動力環(huán)境的生動的解決方案。
"CompactRIO提供了一個堅固、可靠、獨立的平臺,使我們的團隊能夠進行持續(xù)性測試,這在普通的計算機上是不可能實現(xiàn)的。"
由心臟病導致的死亡占發(fā)達國家所有死亡人口的將近一半。心臟移植仍然是治療心臟病最有效的方式,但捐獻的器官遠遠及不上需求。為了解決這種不平衡情況,目前人們正在研究使用。利茲大學正在開發(fā)的一種新穎的機械人工心臟輔助裝置被命名為智能心室輔助裝置(iVAD)。該裝置能夠作為人造肌肉包覆心臟,通過在心臟心室外表面周圍施加與自然節(jié)律同步的壓力,為衰竭的心臟提供輔助。這種周期性的“擠壓”作用可以增加心肌動力,提高患病心臟的排血量。
我們需要真實地把iVAD應用于一個模擬的心臟,以便測量壓力對其的影響,所以逼真的體外測試環(huán)境對于開發(fā)來說勢在必行。在過去,其他的心臟輔助裝置的測試系統(tǒng)一般采用龐大的機械仿真循環(huán)系統(tǒng),或者使用靠別的動物的血液循環(huán)支撐的離體心臟來完成。這兩種方法對我們而言都不實用,所以我們創(chuàng)造了一個獨特的HIL(硬件在環(huán))的心臟模擬器,它可以把實時的軟件血流模型與實體3D人工心臟相結(jié)合。我們使用NI LabVIEW 圖形化程序環(huán)境和CompactRIO 進一步增強測試環(huán)境,所以心臟模擬器可以像獨立系統(tǒng)一樣工作并且在更長的持續(xù)期間內(nèi)可靠運行。
心臟模擬器原理
我們需要心臟模擬器能夠被重新配置,以便復制不同的病人類型、疾病類型和動物模型的真實血液環(huán)境。這種調(diào)整可以減少對動物試驗的依賴,因為心臟模擬器可以延長使用iVAD原型進行的試驗,并且提供關于iVAD生理效應的信息。
對于iVAD等輔助裝置而言,輔助裝置和心臟表面的交互作用至關重要。這種交互作用很可能取決于難以模擬的人體特性,例如間隙和非線性摩擦;因此,對于心臟模擬器而言,擁有一個可以和iVAD進行交互的實體對象至關重要,我們可以監(jiān)測壓縮過程中的原始數(shù)據(jù)。
心臟模擬器設計
在設計心臟模擬器的過程中,我們采用了HIL仿真的原理。這是一種在工業(yè)中常見的測試技術。HIL在軟件中仿真了系統(tǒng)中的一些元件,并且通過I/O將它們連接到需要測試的同一系統(tǒng)中的特定的真實硬件。為了滿足心臟模擬器的要求,我們采用了一個機械心臟作為HIL仿真的中的硬件部分,將其放置在一個仿真的血流循環(huán)模型中。并利用兩者之間的連續(xù)不斷的相互作用的回路進行評估,以了解當iVAD被移植到人體內(nèi)時如何進行輔助,并對心臟和血流產(chǎn)生影響。
人工心臟的形狀由兩個可變形的半圓狀的結(jié)構所確定,它們由彎曲的彈簧鋼條所組成,鋼條被固定在兩頭,其邊界形狀是可以調(diào)節(jié)的。我們還開發(fā)了一個定制的NI視覺程序用于確定必要邊界形狀,以使每個鋼條的輪廓與參考的心臟模型相匹配。我們采用兩個線性執(zhí)行機構來實現(xiàn)彎曲鋼條的循環(huán)控制,以逼真地表現(xiàn)出心臟左心室和右心室的動態(tài)運動。我們控制血流模型中的執(zhí)行機構進行運動,以仿真模擬心臟的運動,所以模擬心臟的任何體積變化都會直接影響到人工心臟。除了能夠匹配心臟的形狀,這樣的設計還使我們可以通過單獨改變鋼條的機械屬性(例如厚度),來改變?nèi)斯ば呐K外圍的局部硬度。最后,我們在鋼條外圍包裹了一層薄薄的松緊帶,從而實現(xiàn)了iVAD。
心臟模擬器實現(xiàn)
如上所述,我們使用帶有反饋的回路來評估iVAD對心血管系統(tǒng)的幫助。在人工心臟周圍相等間隔位置安放了四個相似的壓力傳感器,以便提供iVAD輔助過程(壓縮過程)中的數(shù)據(jù)。在模型內(nèi),這些數(shù)據(jù)被轉(zhuǎn)換為對于每個心室的輔助壓力,并實時計算出隨后對血流的影響,最后輸出到硬件并且相應改變?nèi)斯ば呐K的運動。
血流模型的工作方式與電氣網(wǎng)絡的閉環(huán)集中參數(shù)模型類似。因為心臟的每個區(qū)域都單獨被模擬的,所以我們可以對心臟實現(xiàn)局部控制,并調(diào)節(jié)出特殊的心臟條件或心臟疾病。為了滿足我們的主要目標,血流模型可以自動調(diào)整,通過使用非線性最小平方參數(shù)估計法(在LabVIEW代碼中,可以實現(xiàn)為一種狀態(tài))來表征生理數(shù)據(jù)。這意味著心臟模擬器可以精確反映大多數(shù)病狀和體內(nèi)模型的血液動力特征,有助于提高我們對裝置的潛在效應的了解。
我們使用CompactRIO來控制人工心臟,運行仿真并且經(jīng)由TCP把數(shù)據(jù)發(fā)送到Windows主機以供顯示和保存。實時控制器可以執(zhí)行兩個并行運行的回路:一個高優(yōu)先級控制回路用于控制血流模型,以及一個低優(yōu)先級通信回路,可以向Windows主機發(fā)送和接收隊列中的TCP數(shù)據(jù)。高優(yōu)先級血流模型回路以500 Hz的速度運行,并且把兩個心室容積轉(zhuǎn)換為已校準的定位電壓。定位電壓被發(fā)送到現(xiàn)場可編程門陣列(FPGA)I/O,以控制所有線性執(zhí)行機構來執(zhí)行。FPGA經(jīng)過編譯后可處理CompactRIO的所有I/O,并提供加熱器(用于使心臟模擬器外殼溫度保持在37°C。(體溫))的比例積分(PI)控制。
NI解決方案的優(yōu)勢
CompactRIO為心臟模擬器的制造提供了一個堅固、可靠、獨立的平臺,使我們的團隊能夠進行持續(xù)性測試,這在普通的計算機上是不可能實現(xiàn)的。系統(tǒng)緊湊小巧,并擁有各種插入式模塊,為我們成功創(chuàng)造解決方案提供了有力的保障。
評論