關(guān) 閉

新聞中心

EEPW首頁(yè) > 工控自動(dòng)化 > 設(shè)計(jì)應(yīng)用 > 基于FPGA的鎖相環(huán)位同步提取電路設(shè)計(jì)

基于FPGA的鎖相環(huán)位同步提取電路設(shè)計(jì)

——
作者:周云水 時(shí)間:2006-05-16 來(lái)源:電子產(chǎn)品世界 收藏

摘  要:本文介紹了一種鎖相環(huán)位同步提取電路的組成和工作原理,并用FPGA實(shí)現(xiàn)了該電路,給出了實(shí)測(cè)的波形。

關(guān)鍵詞:位同步;數(shù)字鎖相環(huán);FPGA

概述

  同步是通信系統(tǒng)中一個(gè)重要的問(wèn)題。在數(shù)字通信中,除了獲取相干載波的載波同步外,位同步的提取是更為重要的一個(gè)環(huán)節(jié)。因?yàn)橹挥写_定了每一個(gè)碼元的起始時(shí)刻,才能對(duì)數(shù)字信息作出正確的判決。利用全數(shù)字鎖相環(huán)可直接從接收到的單極性不歸零碼中提取位同步信號(hào)。

  一般的位同步電路大多采用標(biāo)準(zhǔn)邏輯器件按傳統(tǒng)數(shù)字系統(tǒng)設(shè)計(jì)方法構(gòu)成,具有功耗大,可靠性低的缺點(diǎn)。用FPGA設(shè)計(jì)電路具有很高的靈活性和可靠性,可以提高集成度和設(shè)計(jì)速度,增強(qiáng)系統(tǒng)的整體性能。本文給出了一種基于FPGA的數(shù)字鎖相環(huán)位同步提取電路。

圖1 數(shù)字鎖相環(huán)位同步提取電路框圖

圖2 基于FPGA的鎖相環(huán)位同步提取電路

數(shù)字鎖相環(huán)位同步

提取電路的原理

數(shù)字鎖相環(huán)位同步提取電路框圖如圖1所示。

  本地時(shí)鐘產(chǎn)生兩路相位相差p的脈沖,其頻率為fo=mRb,Rb為輸入單極性不歸零碼的速率。輸入信碼的正、負(fù)跳變經(jīng)過(guò)過(guò)零檢測(cè)電路后變成了窄脈沖序列,它含有信碼中的位同步信息,該位同步窄脈沖序列與分頻器輸出脈沖進(jìn)行鑒相,分頻比為m。若分頻后的脈沖相位超前于窄脈沖序列,則在“1”端有輸出,并通過(guò)控制器將加到分頻器的脈沖序列扣除一個(gè)脈沖,使分頻后的脈沖相位退后;若分頻后的脈沖相位滯后窄脈沖序列,則在“2”端有輸出,并通過(guò)控制器將加到分頻器的脈沖序列附加一個(gè)脈沖,使分頻后的脈沖相位提前。直到鑒相器的“1”、“2”端無(wú)輸出,環(huán)路鎖定。

基于FPGA的鎖相環(huán)

位同步提取電路
 
  該電路如圖2所示,它由雙相高頻時(shí)鐘源、過(guò)零檢測(cè)電路、鑒相器、控制器和分頻器組成。

雙相高頻時(shí)鐘源

  該電路由D觸發(fā)器組成的二分頻器和兩個(gè)與門(mén)組成,它將FPGA的高頻時(shí)鐘信號(hào)clk_xm變換成兩路相位相反的時(shí)鐘信號(hào),由e、f輸出,然后送給控制電路的常開(kāi)門(mén)G3和常閉門(mén)G4。其中f路信號(hào)還作為控制器中的D1和D2觸發(fā)器的時(shí)鐘信號(hào)。實(shí)際系統(tǒng)中,F(xiàn)PGA的高頻時(shí)鐘頻率為32.768MHz,e、f兩路信號(hào)頻率為32.768/2=16.384MHz。

過(guò)零檢測(cè)電路

  該電路見(jiàn)圖2中g(shù)ljc部分,它由D觸發(fā)器和異或門(mén)組成。過(guò)零檢測(cè)的輸出脈沖codeout的寬度應(yīng)略大于f路信號(hào)一個(gè)周期,但為了減少鎖相環(huán)的穩(wěn)態(tài)誤差,該輸出脈沖不宜過(guò)寬。實(shí)際系統(tǒng)中,過(guò)零檢測(cè)電路的時(shí)鐘信號(hào)clkin由FPGA的高頻時(shí)鐘四分頻得來(lái),這樣輸出的脈沖寬度約是f路信號(hào)的兩個(gè)周期。

鑒相器

  該電路由兩個(gè)與門(mén)組成,分別是超前門(mén)G1和滯后門(mén)G2。過(guò)零檢測(cè)電路的輸出信號(hào)b與位定時(shí)信號(hào)clkout一起進(jìn)入鑒相器,若clkout超前b,則滯后門(mén)G2被封鎖,輸出為0,超前門(mén)G1的輸出端有窄脈沖輸出;若clkout滯后b,則超前門(mén)G1被封鎖,輸出為0,滯后門(mén)G2的輸出端有窄脈沖輸出。

分頻器

  該電路對(duì)應(yīng)于圖2中div64部分。輸入的信號(hào)頻率是256KHz,e、f兩路信號(hào)的頻率均為16.384MHz,故該電路完成16384/256=64的分頻功能。當(dāng)控制電路無(wú)超前或滯后控制脈沖輸出時(shí),D1的Q端為0,D2的Q端也為0,常開(kāi)門(mén)G3處于打開(kāi)狀態(tài),常閉門(mén)G4處于關(guān)閉狀態(tài),e路信號(hào)通過(guò)常開(kāi)門(mén)G3、異或門(mén)G5到達(dá)64分頻器的輸入端,經(jīng)分頻后產(chǎn)生穩(wěn)定的位定時(shí)信號(hào)。

控制器

  分頻器輸出的位定時(shí)信號(hào)clkout與過(guò)零檢測(cè)脈沖b進(jìn)行相位比較。當(dāng)位定時(shí)信號(hào)clkout超前于b時(shí),超前門(mén)G1有正脈沖輸出。在觸發(fā)脈沖f的上升沿,D1觸發(fā)器的Q端由低變高,經(jīng)過(guò)非門(mén)后,使常開(kāi)門(mén)G3關(guān)閉一個(gè)時(shí)鐘周期,將e路脈沖扣除一個(gè),使clkout相位向滯后方向變化一個(gè)時(shí)鐘周期。
當(dāng)位定時(shí)信號(hào)clkout滯后于b時(shí),滯后門(mén)G2有正脈沖輸出。在觸發(fā)脈沖f的上升沿,D2觸發(fā)器的Q端由低變高,使常閉門(mén)G4打開(kāi)一個(gè)時(shí)鐘周期,在分頻器輸入端添加一個(gè)脈沖。

圖3  輸入的信碼與提取的位同步信號(hào)

實(shí)際結(jié)果

  以上是全數(shù)字鎖相環(huán)的電路工作原理,全部電路在Altera的EP1K30TC144-1芯片上實(shí)現(xiàn)。該芯片的工作頻率選為32.768MHz,也作為位同步提取電路的本地高頻時(shí)鐘,另外,該時(shí)鐘信號(hào)四分頻后還作為過(guò)零檢測(cè)電路的時(shí)鐘。輸入的單極性不歸零碼的碼元速率為256kb/s。從輸入信碼中提取的位同步信號(hào)如圖3所示,從波形上看,該全數(shù)字鎖相環(huán)位同步提取電路能很好地從輸入的信碼中提取位同步信號(hào)?!?/P>

分頻器相關(guān)文章:分頻器原理
脈沖點(diǎn)火器相關(guān)文章:脈沖點(diǎn)火器原理
鎖相環(huán)相關(guān)文章:鎖相環(huán)原理


評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉