新聞中心

EEPW首頁 > 手機(jī)與無線通信 > 設(shè)計(jì)應(yīng)用 > 時鐘同步技術(shù)現(xiàn)狀及發(fā)展

時鐘同步技術(shù)現(xiàn)狀及發(fā)展

作者: 時間:2010-12-06 來源:網(wǎng)絡(luò) 收藏

 1 引言

本文引用地址:http://butianyuan.cn/article/156905.htm

  作為數(shù)字通信網(wǎng)的基礎(chǔ)支撐,演進(jìn)始終受到通信網(wǎng)的驅(qū)動。在網(wǎng)絡(luò)方面,通信網(wǎng)從模擬到數(shù)字,從TDM網(wǎng)絡(luò)為主發(fā)展到以分組網(wǎng)絡(luò)為主;在業(yè)務(wù)方面,從以TDM話音業(yè)務(wù)為主發(fā)展到以分組業(yè)務(wù)為主的多業(yè)務(wù)模式,從固定話音業(yè)務(wù)為主發(fā)展到以固定和移動話音業(yè)務(wù)并重,從窄帶業(yè)務(wù)發(fā)展到寬帶業(yè)務(wù)等等。在與網(wǎng)相關(guān)性非常緊密的傳輸技術(shù)方面,從同軸傳輸發(fā)展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技術(shù)。隨著通信新業(yè)務(wù)和新技術(shù)的不斷發(fā)展,其要求越來越高,包括鐘源、鎖相環(huán)等基本技術(shù)經(jīng)歷了多次更新?lián)Q代,同步技術(shù)也在不斷地推陳出新,時間同步技術(shù)更是當(dāng)前業(yè)界關(guān)注的焦點(diǎn)。

  2 技術(shù)發(fā)展歷程

  時鐘同步涉及的最基本技術(shù)包括鐘源技術(shù)和鎖相環(huán)技術(shù),隨著應(yīng)用需求的不斷提高,技術(shù)、工藝的不斷改進(jìn),鐘源技術(shù)和鎖相環(huán)技術(shù)也得到了快速的演進(jìn)和發(fā)展。

  (1) 鐘源技術(shù)

  時鐘振蕩器是所有數(shù)字通信設(shè)備的基本部件,按照應(yīng)用時間的先后,鐘源技術(shù)可分為普通晶體鐘、具有恒溫槽的高穩(wěn)晶振、原子鐘、芯片級原子鐘。

  一般晶體振蕩器精度在nE-5~nE-7之間,由于具有價格便宜、尺寸小、功耗低等諸多優(yōu)點(diǎn),晶體振蕩器在各個行業(yè)和領(lǐng)域中得到廣泛應(yīng)用。然而,普通晶體鐘一般受環(huán)境溫度影響非常大,因此,后來出現(xiàn)了具有恒溫槽的晶體鐘,甚至具有雙恒溫槽的高穩(wěn)晶體鐘,其性能得到很大改善。隨著通信技術(shù)的不斷發(fā)展,對時鐘精度和穩(wěn)定性提出了更高的要求,晶體鐘源已經(jīng)難以滿足要求,原子鐘技術(shù)開始得到應(yīng)用,銣鐘和銫鐘是其中最有代表性的原子鐘。一般來說,銣鐘的精度能達(dá)到或優(yōu)于nE-10的量級,而銫鐘則能達(dá)到或優(yōu)于1E-12的量級。

  然而,由于尺寸大、功耗高、壽命短,限制了原子鐘在一些領(lǐng)域的應(yīng)用,芯片級原子鐘有望解決這個難題。目前民用的芯片級原子鐘基本上處于試驗(yàn)階段,其尺寸只有立方厘米量級,耗電只有百毫瓦量級,不消耗原子,延長了使用壽命,時鐘精度在nE-10量級以上,具有很好的穩(wěn)定性。芯片級原子鐘將在通信、交通、電力、金融、國防、航空航天以及精密測量等領(lǐng)域有著廣泛的應(yīng)用前景。

  (2) 鎖相環(huán)技術(shù)

  鎖相環(huán)技術(shù)是一種使輸出信號在頻率和相位上與輸入信號同步的電路技術(shù),即當(dāng)系統(tǒng)利用鎖相環(huán)技術(shù)進(jìn)入鎖定狀態(tài)或同步狀態(tài)后,系統(tǒng)的震蕩器輸出信號與輸入信號之間相差為零,或者保持為常數(shù)。鎖相環(huán)路技術(shù)是時鐘同步的核心技術(shù),它經(jīng)歷了模擬鎖相環(huán)路技術(shù)和數(shù)字鎖相環(huán)路技術(shù)的時代,直至發(fā)展到今天的智能鎖相環(huán)路技術(shù)。

  模擬鎖相環(huán)的各個部件都是由模擬電路實(shí)現(xiàn),一般由鑒相器、環(huán)路濾波器、壓控振蕩器等3部分組成,其中鑒相器用來鑒別輸入信號與輸出信號之間的相位差 ,并輸出電壓誤差,其噪聲和干擾成分被低通性質(zhì)的環(huán)路濾波器濾除,形成壓控振蕩器的控制電壓,其作用于壓控振蕩器的結(jié)果是把它的輸出振蕩頻率拉向環(huán)路輸入信號頻率,當(dāng)二者相等時,即完成鎖定。

  與模擬鎖相環(huán)相比,數(shù)字鎖相環(huán)中的誤差控制信號是離散的數(shù)字信號,而不是模擬電壓,因此受控的輸出電壓的改變是離散的而不是連續(xù)的。另外,環(huán)路組成部件也全用數(shù)字電路實(shí)現(xiàn),改善了模擬鎖相環(huán)穩(wěn)定性差的問題。隨著數(shù)字技術(shù)的發(fā)展,出現(xiàn)了智能鎖相環(huán)路技術(shù),即直接數(shù)字頻率合成(DDS—Digital Direct Frequency Synthesis)技術(shù)。智能全數(shù)字鎖相環(huán)在單片F(xiàn)PGA中就可以實(shí)現(xiàn)。借助鎖相環(huán)狀態(tài)監(jiān)測電路,通過CPU可以縮短鎖相環(huán)鎖定時間,并逐漸改進(jìn)其輸出頻率的抖動特性,達(dá)到最佳的鎖相和頻率輸出效果。

  3 同步技術(shù)分析

  同步技術(shù)包括頻率同步技術(shù)和時間同步技術(shù)兩個方面,其中頻率同步技術(shù)比較成熟不再贅述,下面將就通信領(lǐng)域?qū)r間同步的需求和在通信領(lǐng)域中得到應(yīng)用的現(xiàn)有時間同步技術(shù)展開分析。

  3.1 時間同步需求

  時間同步在通信領(lǐng)域中有著越來越廣泛的需求,各種通信系統(tǒng)對時間同步的需求可分為高精度時間需求(微秒級和納秒級)和普通精度時間需求(毫秒級和秒級)。

  (1)高精度時間需求

  對于CDMA基站和cdma2000基站,時間同步的要求是10μs;對于TD-SCDMA基站,時間同步的要求是3μs;對于WiMAX系統(tǒng)和LTE,時間同步的要求是1μs 甚至亞微秒量級,這就要求時間同步服務(wù)等級需達(dá)到100ns量級。如果基站與基站之間的時間同步不能達(dá)到上述要求,將可能導(dǎo)致在選擇器中發(fā)生指令不匹配,導(dǎo)致通話連接不能正常建立。

  對于3G網(wǎng)絡(luò)中基于位置定位的服務(wù),若是利用手機(jī)接收附近多個基站發(fā)送的無線信號進(jìn)行定位,則要求基站必須是時間同步的。一般來說10ns的時間同步誤差將引起數(shù)米的位置定位誤差,不同精度的位置服務(wù)要求的時間精度也不相同。

  (2)普通精度時間需求

  對于No.7信令監(jiān)測系統(tǒng),為避免因信令出現(xiàn)先后順序的錯誤而產(chǎn)生虛假信息,必須要求所有信令流的時間信息是準(zhǔn)確無誤的,時間同步的要求是1ms。對于各種交換網(wǎng)絡(luò)的計(jì)費(fèi)系統(tǒng),為避免交換機(jī)之間大的時間偏差可能會導(dǎo)致出現(xiàn)有相互矛盾的話單,時間同步的要求是0.5s。對于各種業(yè)務(wù)的網(wǎng)管系統(tǒng),為有效分析出故障的源頭及引起的后果,進(jìn)行故障定位和查找故障原因,時間同步的要求是0.5s。

  對于基于IP網(wǎng)絡(luò)的流媒體業(yè)務(wù)中RSTP,它是為流媒體實(shí)現(xiàn)多點(diǎn)傳送和以點(diǎn)播方式單一傳送提供健壯的協(xié)議,RTSP采用了時間戳方法來保證流媒體業(yè)務(wù)的QoS。對于基于IP網(wǎng)絡(luò)的電子商務(wù)等,為保障SSL協(xié)議的安全性,采用“時間戳”方式來解決“信息重傳”的攻擊方法,其對時間同步的要求至少是0.1s左右。通信網(wǎng)絡(luò)中大量的基于計(jì)算機(jī)的設(shè)備及應(yīng)用系統(tǒng)(例如移動營業(yè)系統(tǒng)、綜合查詢系統(tǒng)、客服系統(tǒng)等)普遍支持NTP,時間同步的要求在秒級或者分鐘級。

  3.2 現(xiàn)有時間同步技術(shù)

  針對不同精度的時間同步需求,在通信網(wǎng)中主要應(yīng)用了以下幾種時間同步技術(shù):

  (1) IRIG-B(Inter Range InstrumentaTIon Group)和DCLS (DC Level Shift)

  IRIG編碼源于為磁帶記錄時間信息,帶有明顯的模擬技術(shù)色彩,從20世紀(jì)50年代起就作為時間傳遞標(biāo)準(zhǔn)而獲得廣泛應(yīng)用。IRIG-A和IRIG- B都是于1956年開發(fā)的,它們的原理相同,只是采用的載頻頻率不同,故其分辨率也不一樣。IRIG-B采用1kHz的正弦波作為載頻進(jìn)行幅度調(diào)制,對最近的秒進(jìn)行編碼。IRIG-B的幀內(nèi)包括的內(nèi)容有天、時、分、秒及控制信息等,可以用普通的雙絞線在樓內(nèi)傳輸,也可在模擬電話網(wǎng)上進(jìn)行遠(yuǎn)距離傳輸。到了20世紀(jì)90年代,為了適應(yīng)世紀(jì)交替對年份表示的需要,IEEE 1344-1995規(guī)定了IRIG-B時間碼的新格式,要求編碼中還包括年份,其它方面沒有改變。

  DCLS是IRIG碼的另一種傳輸碼形,即用直流電位來攜帶碼元信息,等效于IRIG調(diào)制碼的包絡(luò)。DCLS技術(shù)比較適合于雙絞線局內(nèi)傳輸,在利用該技術(shù)進(jìn)行局間傳送時間時,需要對傳輸系統(tǒng)介入的固定時延進(jìn)行人工補(bǔ)償,IRIG的精度通常只能達(dá)到10微秒量級。

  (2) NTP(Network Time Protocal)

  在計(jì)算機(jī)網(wǎng)絡(luò)中傳遞時間的協(xié)議主要有時間協(xié)議(Time Protocol)、日時協(xié)議(Daytime Protocol)和網(wǎng)絡(luò)時間協(xié)議(NTP)3種。另外,還有一個僅用于用戶端的簡單網(wǎng)絡(luò)時間協(xié)議 (SNTP)。網(wǎng)上的時間服務(wù)器會在不同的端口上連續(xù)的監(jiān)視使用以上協(xié)議的定時要求,并將相應(yīng)格式的時間碼發(fā)送給客戶。在上述幾種網(wǎng)絡(luò)時間協(xié)議中,NTP協(xié)議最為復(fù)雜,所能實(shí)現(xiàn)的時間準(zhǔn)確度相對較高。在RFC-1305中非常全面地規(guī)定了運(yùn)行NTP的網(wǎng)絡(luò)結(jié)構(gòu)、數(shù)據(jù)格式、服務(wù)器的認(rèn)證以及加權(quán)、過濾算法等。NTP技術(shù)可以在局域網(wǎng)和廣域網(wǎng)中應(yīng)用,精度通常只能達(dá)到毫秒級或秒級。

  近幾年來還出現(xiàn)了改進(jìn)型NTP。與傳統(tǒng)的NTP不同,改進(jìn)型NTP在物理層產(chǎn)生和處理時戳標(biāo)記,這需要對現(xiàn)有的NTP接口進(jìn)行硬件改造。改進(jìn)型 NTP依舊采用NTP協(xié)議的算法,可以與現(xiàn)有NTP接口實(shí)現(xiàn)互通。與原有NTP相比,其時間精度可以得到大幅度提升。目前支持改進(jìn)型NTP的設(shè)備還較少,其精度和適用場景等還有待進(jìn)一步研究。改良行NTP號稱能達(dá)到十微秒量級。

電子血壓計(jì)相關(guān)文章:電子血壓計(jì)原理



上一頁 1 2 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉