采用光電傳感和路徑記憶的智能車導(dǎo)航系統(tǒng)設(shè)計
因此,只要掌握了傳感器電壓—偏移距離特性關(guān)系,就可以根據(jù)傳感器電壓大小確定各傳感器與黑色標(biāo)記線的距離(而不是僅僅粗略判斷該傳感器是否在線上),進(jìn)而獲得車身縱軸線相對路徑標(biāo)記線的位置,得到連續(xù)分布的路徑信息。
根據(jù)實(shí)車試驗(yàn),可以將路徑探測的精度提高到1mm。這樣傳感器采集的信息就能保證了單片機(jī)可以獲得精確的賽道信息,從而為提高賽車的精確控制提供了保證。
雙排排列與前瞻設(shè)計
本文開發(fā)了智能車性能仿真平臺,對傳感器的布局進(jìn)行了深入研究。由于轉(zhuǎn)向舵機(jī)、電機(jī)和車都是高階慣性延遲環(huán)節(jié),從輸入到輸出需要一定的時間,越早知道前方道路的信息,就越能減小從輸入到輸出的滯后。檢測車前方一定距離的賽道就叫前瞻,在一定的前瞻范圍內(nèi),前瞻越大的傳感器方案,其極限速度就會越高,其高速行駛過程中對引導(dǎo)線的跟隨精度也相對較高,系統(tǒng)的整體響應(yīng)性能較好。因此路徑識別模塊設(shè)計成抬起與地面形成一個夾角,前排傳感器用于前瞻,后排傳感器對賽道始點(diǎn)進(jìn)行識別、計算車身縱軸線與賽道中心線的偏差斜率,以利于更好地調(diào)整車輛的姿態(tài)。
為了保證在離地間隙盡可能大的情況下光電傳感器仍然有足夠大的發(fā)光強(qiáng)度,本文采用了大電流脈沖觸發(fā)發(fā)光的控制方式。
根據(jù)實(shí)驗(yàn)測試,發(fā)光管在發(fā)光時,經(jīng)過的電流約為0.5A。如果用15個傳感器,則瞬時電流為7.5A。這樣大的電流肯定會對電池電壓造成一定的沖擊,不利于整個系統(tǒng)的正常運(yùn)行。因此將前后排傳感器的發(fā)光時間錯開,通過兩套觸發(fā)電路來控制發(fā)光。這樣就有效減小了紅外發(fā)光管發(fā)光時對電池電壓的沖擊。
轉(zhuǎn)向和驅(qū)動控制與路徑記憶算法
驅(qū)動電機(jī)控制
本文在電機(jī)輸出軸上加一齒盤,電機(jī)輸出軸的轉(zhuǎn)動帶動齒盤的轉(zhuǎn)動。將對射光偶發(fā)光和接受管放在碼盤兩側(cè)。碼盤轉(zhuǎn)動時,由于碼盤上的齒經(jīng)過發(fā)光管發(fā)出的光線時,會阻礙光線傳播。所以接收管兩端的電阻會有很大的變化,這樣,在電路中采樣電阻兩端的電壓就會有很大的變化。用處理器上的脈沖捕捉端口采集電壓脈沖單位時間內(nèi)的個數(shù),就會獲得電機(jī)轉(zhuǎn)速,從而獲得車速。
電機(jī)驅(qū)動采用的是飛思卡爾公司的MC33886。所不同的是本文采用了三片MC33886并聯(lián),一方面可以減小導(dǎo)通電阻,提高電機(jī)驅(qū)動能力,并且MC33886的發(fā)熱情況也有了很大的好轉(zhuǎn);另一方面減小MC33886 內(nèi)部的過流保護(hù)電路對電機(jī)啟動及制動時的影響。
電機(jī)采用PID閉環(huán)控制,可以根據(jù)不同負(fù)載狀況及時調(diào)整PWM的占空比,使車輛迅速地跟蹤目標(biāo)速度。
為了盡量提高車速,采用在直道上設(shè)定最高目標(biāo)車速,定速控制,接近彎道處開始降速,正式轉(zhuǎn)入彎道時,將車速調(diào)整到過彎極限車速,將要出彎道時提前加速。
轉(zhuǎn)向控制
根據(jù)目前采用的雙排模擬式光電傳感器布局,可以得到車身縱軸線距離賽道中心線的偏移量,還可以得到中心線相對于車身縱軸線的斜率,從而得知當(dāng)前狀態(tài)下車身的姿態(tài),進(jìn)而進(jìn)行轉(zhuǎn)向控制。
這里設(shè)定根據(jù)前排傳感器信號得到的轉(zhuǎn)角為θ1,根據(jù)前后排傳感器信號得到的縱軸線斜率信息而得到的轉(zhuǎn)角為θ2,最終的轉(zhuǎn)向角度的確定公式為:
θ=k1θ1+k2θ2
采用這樣的控制策略,可以實(shí)現(xiàn)對車實(shí)際姿態(tài)的加權(quán)控制,大大提高過彎速度,減少由于探測精度問題帶來的決策累積誤差。另外,大前瞻與雙排的雙重組合,達(dá)到了對正常彎道提前轉(zhuǎn)彎,對于S彎道遲滯轉(zhuǎn)向的特性。
為了使舵機(jī)更好地對給定的轉(zhuǎn)角值做出響應(yīng),采用了PID調(diào)節(jié),通過道路試驗(yàn)進(jìn)行參數(shù)整定,使得車輛在高速時保持了很高的穩(wěn)定性。
路徑記憶算法
由于比賽規(guī)則要求車輛在跑道上行駛兩圈,因此車輛第一圈時通過記錄轉(zhuǎn)速傳感器采集到的脈沖數(shù)、轉(zhuǎn)向舵機(jī)的轉(zhuǎn)角等信息,來判斷區(qū)分直道、彎道、S彎道以及轉(zhuǎn)彎的方向與轉(zhuǎn)彎半徑等等信息。根據(jù)第一圈記錄的數(shù)據(jù)信息,可以對第二圈的各個道路點(diǎn)進(jìn)行分段處理。直道上采用最高速加速,在進(jìn)入彎道之前提前進(jìn)行減速,減至過彎的極限最高車速,對于不同半徑的彎道,選擇不同的車速。路徑記憶算法的優(yōu)勢在于對于復(fù)雜的S彎道,可以實(shí)現(xiàn)類似CCD探測頭達(dá)到的效果,選用小的轉(zhuǎn)向角度通過,這樣可以大大縮短時間。具體算法請見。
經(jīng)驗(yàn)及結(jié)論
本文的智能車開發(fā)工作經(jīng)過6輪開發(fā)迭代,從最初的小前瞻單排數(shù)字式傳感器,發(fā)展成脈沖發(fā)光、大前瞻、雙排排列、模擬式傳感器方案;控制策略從單純的PID控制升級到路徑記憶控制,使得車輛的導(dǎo)航性能有了很大提高。通過智能車開發(fā)過程,得出一些經(jīng)驗(yàn)。
*開發(fā)之初需要對光電傳感器特性、轉(zhuǎn)向舵機(jī)特性、驅(qū)動電機(jī)特性、車輛機(jī)械性能、轉(zhuǎn)向側(cè)滑特性、電池特性等進(jìn)行實(shí)際的檢測。
*根據(jù)汽車?yán)碚搶囕v進(jìn)行規(guī)則容許范圍之內(nèi)的結(jié)構(gòu)調(diào)整,使之達(dá)到較佳的機(jī)械性能。
*組委會開發(fā)了仿真平臺,應(yīng)該充分利用該仿真工具對基于光電傳感器的路徑識別方案進(jìn)行研究,結(jié)合硬件的選型和自身在控制及電子方面的經(jīng)驗(yàn),確定路徑識別方案。前瞻距離較遠(yuǎn)的方案有助于提高車輛的通過速度。
*車輛的控制采用PID即可滿足要求,參數(shù)的整定需要結(jié)合道路試驗(yàn)進(jìn)行。車速的加快和減慢不要太劇烈,平穩(wěn)的控制也可以取得很好的效果。過大的加速度會導(dǎo)致電機(jī)和驅(qū)動芯片的過熱以致驅(qū)動性能下降。
本文引用地址:http://www.butianyuan.cn/article/160794.htm
評論