次級(jí)同步整流及輸出均流的集成控制器
1)當(dāng)+5V變換器的多個(gè)輸出端并聯(lián)時(shí),每個(gè)+5V變換器的電流共享引腳(Ishare)也要接在一起。這使每個(gè)+5V變換器的控制芯片(SC4910)得到相同的ISHARE電壓。
2)因?yàn)槊總€(gè)變換器都采用電流模式控制,當(dāng)每個(gè)+5V變換器的Vea相同時(shí),它們的次級(jí)輸出電感會(huì)有相同的峰值電流,所以Vea值代表每個(gè)+5V變換器上輸出電感的峰值電流。
3)如果某一個(gè)+5V變換器(變換器1)的電流大于另一個(gè)+5V變換器(變換器2)的電流,變換器1的Vea將會(huì)大于變換器2的Vea。此時(shí)變換器1的Vss就會(huì)下降,從而降低它的Vea直到它等于變換器2的Vea。
4)如果變換器1失效,變換器2的引腳Ishare電壓將會(huì)重新調(diào)整到一個(gè)新的電壓以啟動(dòng)其正常工作并且和其它運(yùn)行的變換器分配電流。
5)由于主開關(guān)峰值電流用于電流模式控制和均流控制,所以不需要用檢測(cè)電阻檢測(cè)次級(jí)電感平均電流。
6)由于這樣的均流電路主要利用每個(gè)變換器
表4用于分析所選擇的功率器件次級(jí)輸出電感上的峰值電流來控制電感上的平均電流(即變換器輸出電流),每個(gè)變換器輸出電感值之間的誤差會(huì)造成輸出電流的誤差。實(shí)驗(yàn)結(jié)果顯示重載時(shí)均流誤差為3%~7%。
表4 用于分析所選擇的功率器件
非同步+冗余二極管 | 同步+冗余MOSFET | |||||
---|---|---|---|---|---|---|
主 | 次 | 冗余 | 主 | 次 | 冗余 | |
+5V變換器 | IRFP250 | IRF82CNQ030A | I82CNQ030A | IRFP250 | IRF2804 | IRF2804 |
+3.3V變換器 | IRFP250 | IRF82CNQ030A | I82CNQ030A | IRFP250 | IRF2804 | IRF2804 |
+12V變換器 | IRFP250 | IRF30CTQ080 | IRF32CTQ030 | IRFP250 | IRF540 | 32CTQ030 |
4 定量損耗分析
首先,對(duì)傳統(tǒng)二極管整流cPCI電源(Non Syn)和同步整流cPCI電源(Syn.)作定量損耗分析。表4列出了二者所選擇的一些功率器件。
圖7,圖8,圖9所示為二者同為200W3U電源時(shí)的功率損耗對(duì)比圖。+5V和+3.3V變換器都設(shè)計(jì)為典型40A最大負(fù)載,而+12V變換器設(shè)計(jì)為典型7A最大負(fù)載。-12V輸出有很低的電流,這里不做分析。
圖7 5V,40A變換器功率損耗對(duì)比圖
圖8 3.3V,40A變換器功率損耗對(duì)比圖
圖9 12V,7A變換器功率損耗對(duì)比圖
從圖7至圖9可以看出,同步整流變換器的功率損耗比傳統(tǒng)二極管整流變換器要低很多。
圖10是200W和400W二種電源的功耗和效率的對(duì)比圖??梢钥闯觯?00W的同步整流cPCI電源的功率損耗近似等于200W傳統(tǒng)二極管整流cPCI電源的功率損耗。因此,同樣是3U的機(jī)架,同步整流電源的輸出功率是傳統(tǒng)二極管整流電源輸出功率的兩倍。
(a) 損耗
(b) 效率
圖10 200W和400W cPCI電源功耗和效率對(duì)比圖
5 結(jié)語
同步整流cPCI電源能夠在很大程度上降低功耗和提高效率。在相同的機(jī)架內(nèi),同步整流cPCI電源的功率是傳統(tǒng)非同步cPCI電源功率的2倍。SC4910能比較容易地實(shí)現(xiàn)同步整流,并且其均流功能滿足cPCI電源要求。
評(píng)論