半導體式光纖溫度傳感器的建模、仿真與實驗
1 引言
光纖溫度檢測技術是近些年發(fā)展起來的一項新技術,由于光纖本身具有電絕緣性好、不受電磁干擾、無火花、能在易燃易爆的環(huán)境中使用等優(yōu)點而越來越受到人們的重視,各種光纖溫度傳感器發(fā)展極為迅速。目前研究的光纖溫度傳感器主要利用相位調制、熱輻射探測、熒光衰變、半導體吸收、光纖光柵等原理。其中半導體吸收式光纖溫度傳感器作為一種強度調制的傳光型光纖傳感器,除了具有光纖傳感器的一般優(yōu)點之外,還具有成本低、結構簡單、可靠性高等優(yōu)點,非常適合于輸電設備和石油井下等現(xiàn)場的溫度監(jiān)測,近年來獲得了廣泛的研究。但是目前的研究還存在一些問題,如系統(tǒng)模型不完善,基礎理論尚不系統(tǒng),產(chǎn)品化困難等。本文對這種傳感器進行了詳細研究,建立了系統(tǒng)的數(shù)學模型,并通過仿真和實驗對系統(tǒng)特性和實際應用的難點進行了分析。
2 測溫原理
當一定波長的光通過半導體材料時,主要引起的吸收是本征吸收,即電子從價帶激發(fā)到導帶引起的吸收。對直接躍遷型材料,能夠引起這種吸收的光子能量hv必須大于或等于材料的禁帶寬度Eg,即
式中,h為普朗克常數(shù):v是頻率。從式(1)可看出,本征吸收光譜在低頻方向必然存在一個頻率界限vg,當頻率低于vg時不可能產(chǎn)生本征吸收。一定的頻率vg對應一個特定的波長,λg=c/vg,稱為本征吸收波長。
根據(jù)固體物理理論,直接躍遷型半導體材料GaAs的吸收波長是隨著溫度的變化而變化的。圖1所示是GaAs的透射率隨溫度變化的示意圖。當溫度升高時,本征吸收波長變大,透射率曲線向長波長方向移動,但形狀不變;反之,當溫度降低時,本征吸收波長變小,透射率曲線保持形狀不變而向短波長方向移動。當光源的光譜輻射強度不變時,GaAs總透射率就隨其溫度發(fā)生變化,溫度越高,總透射率越低。通過測量透過GaAs的光的強弱即可達到測溫的目的。通過研磨拋光將 GaAs加工成很薄的薄片,其入射光和出射光用光纖耦合,這就是半導體吸收式光纖溫度傳感器的基本原理。
3 系統(tǒng)建模
半導體吸收式光纖溫度傳感器系統(tǒng)主要由光源驅動、光源、入射和出射光纖、探頭、光電轉換器以及輸出顯示等部分構成,如圖2所示。
GaAs是一種典型的直接躍遷型材料,它的透射率曲線如圖1和圖3所示。由上文關于測溫原理的分析可知,透射率T是一個關于溫度t和透射光波長λ的函數(shù)。根據(jù)固體物理理論和電磁學理論能得到它的具體表達式。但是這樣得到的透射率T(λ,t)是一個很復雜的式子,實際應用很不方便??梢愿鶕?jù)曲線的形狀將其近似為如圖3所示的3段直線的組合。第1段是λλT,T=0;第2段是λTλλT+△,這時T急劇上升;第三段是λ>λT+ △,這時近似一條緩變的直線。3條直線的交點a、b、c的坐標值分別是a(λT,0),b(λT+△,Tb),c(1000,Tc),由此可以求出曲線的近似表達式為:
光纖傳感器相關文章:光纖傳感器原理
評論