利用高速ADC設(shè)計用于汽車的LIDAR系統(tǒng)
隨著模擬技術(shù)的不斷改善,LIDAR在很多具有廣泛前景的領(lǐng)域得到應(yīng)用,ADC技術(shù)的發(fā)展可以實現(xiàn)更高精度和更低功率的系統(tǒng)設(shè)計。
汽車系統(tǒng)設(shè)計師開發(fā)成熟的LIDAR系統(tǒng),可以根據(jù)交通情況自動地控制汽車速度和剎車系統(tǒng),這樣的系統(tǒng)還能動態(tài)地控制與其它汽車和障礙物的距離,甚至能管理像氣囊這樣的安全功能。該技術(shù)的發(fā)展大大提高了駕駛員的舒適性和安全性。
圖1LIDAR組成框圖
無論是什么應(yīng)用,這種系統(tǒng)的接收路徑上的關(guān)鍵模擬器件都是ADC,它用于將從近處或遠處目標(biāo)發(fā)射回來的窄脈沖信號進行數(shù)字化處理。這種ADC需要非??斓牟蓸铀俾省⒑芨叩哪M輸入帶寬以及低功耗。圖1顯示了LIDAR系統(tǒng)的一個簡化功能框圖。
可選的系統(tǒng)實現(xiàn)方法
當(dāng)前最常用的方法是具有相位比較功能的連續(xù)波(CW)激光和脈沖激光。CW激光系統(tǒng)的工作原理是:目標(biāo)物體反射回一個原始發(fā)射信號的移相信號,接收器將收到的移相信號與原始信號進行比較,相位比較器的輸出可以用于計算距離。正如其名所指,脈沖激光系統(tǒng)發(fā)射和接收短光脈沖信號。半導(dǎo)體脈沖激光用于要求低成本、低功耗、小尺寸和輕重量的應(yīng)用中。半導(dǎo)體脈沖激光需要在接收器中采用非??斓腁DC,這是當(dāng)前最常用的方法,也是本文討論的重點。
LIDAR系統(tǒng)可以測量的距離取決于以下幾個因素:激光峰值功率、激光的發(fā)散性、光學(xué)系統(tǒng)和大氣能見度、目標(biāo)物體的反射特性以及檢光器的靈敏度。能見度和反射系數(shù)決定于具體的應(yīng)用,設(shè)計的靈活性很大程度上取決于激光源的功率和接收器的靈敏度。TOF測量的準(zhǔn)確性取決于激光的脈寬以及所使用的ADC的速度和精度。
根據(jù)不同的應(yīng)用需求,所用的激光功率在幾毫瓦到幾百瓦之間。半導(dǎo)體脈沖激光的距離計算公式基于功率以及其它的系統(tǒng)和大氣條件,LIDAR系統(tǒng)相對于一個外部物體的往返距離計算公式是:距離=√ [(P * A* Ta * To)/(Ds * PI * B)]式中,P為激光功率,A為Rx光學(xué)系統(tǒng)面積(鏡頭或鏡面),Ta為大氣能見度,To為光學(xué)系統(tǒng)的能見度,Ds為檢光器靈敏度,B為光束的輻射發(fā)散性。
對于接收器中的低功率激光檢測,設(shè)計師具有三個基本的檢光器選擇:硅PIN檢光器、雪崩光電二極管(APD)和光電倍增管(PMT)。APD廣泛用于測量儀表和航空航天應(yīng)用中,提供了其它檢光器所不可比擬的高速和高靈敏度性能。
接收器中的APD將接收到的光脈沖信號轉(zhuǎn)變?yōu)殡娦盘?,輸出與入射光成正比的電流,用互阻抗放大器將這個輸出電流轉(zhuǎn)換為電壓信號。好的互阻抗放大器應(yīng)該具有高增益、高輸入阻抗、超低電壓和電流噪聲以及低輸入電容,它通常具有一個FET或MOS輸入級用于滿足這些要求。采用高性能器件可以達到輸入噪聲電壓小于1.0 nv√Hz、電流噪聲小于15 fA√Hz的性能?;プ杩狗糯笃鞯妮敵鐾ǔT谟葾DC進行數(shù)字化之前轉(zhuǎn)換為一種差分信號并進行放大。
發(fā)送的脈沖信號通常被大氣環(huán)境等因素衰減,導(dǎo)致發(fā)射脈沖信號與接收信號之間存在很大強度差異。發(fā)射器鄰近的物體也可能會反射回高功率信號到接收器,這導(dǎo)致對接收系統(tǒng)苛刻的動態(tài)范圍要求,這種接收系統(tǒng)必須具有足夠的靈敏度來處理滿功率脈沖或超低功率的脈沖信號。因此,100dB的動態(tài)范圍要求并不鮮見,這種動態(tài)范圍通常是在ADC之前的前端電路中采用可變增益放大器(VGA)或者數(shù)字VGA來實現(xiàn)的,如圖2所示(CLC5526為數(shù)字VGA,ADC08D1000為雙路低功耗、1.6GSPS的8位ADC)。
圖2 在前端電路中采用數(shù)字VGA實現(xiàn)高動態(tài)范圍
高采樣速率提高LIDAR系統(tǒng)精度
距離測量可以達到的精度與ADC采樣頻率直接相關(guān)。由于光速C = 3E+08 m/s,而采樣速率為1GSPS的ADC的時鐘周期為1ns。在1ns的采樣時間內(nèi),光的傳播距離為0.3m。因此,在1GSPS采樣速率下,分辨率為30cm/m。這意味著在任何距離下,采樣速率為1GSPS時可以達到+/- 15cm的精度。隨著采樣速率的降低,誤差將增加。
如前面所述,通過反射光脈沖的波長改變可以確定目標(biāo)的某些物理特性,這稱為多普勒位移。為測量窄脈沖波長的改變,需要采樣速率為1GSPS或更高的ADC。
接收脈沖的形狀也包含目標(biāo)物體的特性信息。只有非常高的過采樣率才能確定脈沖形狀,過采樣對于數(shù)字概念來說,還對處理增益有好處,更高的處理增益可以得到更高的信噪比(SNR)。
多個ADC的同步實現(xiàn)
多個ADC交替工作來增加采樣速率,這個采樣速率是單個器件目前尚不能達到的。增加采樣速率的好處是可以得到更精細的脈沖形狀和更高的時序精度。本文談到的一個ADC固有的挑戰(zhàn)是ADC輸出數(shù)據(jù)流的同步。系統(tǒng)開發(fā)者必須準(zhǔn)確地知道ADC輸出的哪個字(word)對應(yīng)于系統(tǒng)前端采樣的脈沖?! 楹喕@種時間交替處理,采用ADC08Dxxx系列芯片能夠準(zhǔn)確地復(fù)位其采樣時鐘輸入與數(shù)據(jù)輸出時鐘(DCLK)輸出之間的關(guān)系,這種關(guān)系是由用戶提供的DCLK_RST脈沖決定的。這樣可以允許一個系統(tǒng)中的多個ADC的DCLK(和數(shù)據(jù))輸出轉(zhuǎn)換可以與它們用來采樣的共享CLK輸入發(fā)生在同一時間點上。
圖3 DDR模式下DCLK的復(fù)位時序。
信號在FR04 PCB上的傳輸速度為20cm/ns(即每50ps1cm),如果ADC相互并不是很靠近的話,圖3中的設(shè)計時間是難以實現(xiàn)的。
在這情況下,建議短時間(小于50ns)停止時鐘,這樣,在DCLK_Res置位期間維持交流耦合。推薦輸入時鐘采用交流耦合。交流耦合電容的時間常數(shù)是50 K?(內(nèi)部偏置電阻)
評論