新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 利用數字隔離器簡化設計并確保系統(tǒng)可靠性

利用數字隔離器簡化設計并確保系統(tǒng)可靠性

作者: 時間:2013-08-20 來源:網絡 收藏

內容提要

本文引用地址:http://www.butianyuan.cn/article/174808.htm

工業(yè)環(huán)境中使用的器件往往需要進行隔離以確保用戶和系統(tǒng)安全,同時也是為了保證在高共模電壓下獲得準確的結果。為光耦合器一類的較老技術提供了一種可靠、易用的替代方案。利用,工程師們可以優(yōu)化隔離系統(tǒng)設計,以降低功耗、保證系統(tǒng)性能,同時無需借助額外的設計裕量來補償缺失或不完整的器件規(guī)格。

簡介

設計隔離儀器頗具挑戰(zhàn)性,有時甚至會令人沮喪不已。隔離前端可以保護用戶免受測量系統(tǒng)中可能存在的致命電壓的傷害,同時允許工程師在高共模電壓下進行精確的測量。圖1所示為此類測量的一個典型示例。在高壓燃料電池或電池組中,了解單個電池的電壓有助于確保系統(tǒng)的安全運行,同時可以最大限度地延長電池壽命。在確定單個電池的電壓時,我們必須在高達數百伏特的共模電壓下進行測量。在用熱電偶測量載流導體的溫度時,會出現類似的情況。在本例中,系統(tǒng)必須具備測量毫伏級信號分辨率的能力,同時抑制高電平的60 Hz共模噪聲,并保護操作員不受任何危險電壓的傷害。

最初人們用隔離放大器來解決這個問題,但隨著測量帶寬和分辨率的增長,這種解決方案已經過時?,F在,執(zhí)行此類測量的最精確、最經濟、最高效技術是隔離整個測量前端(包括模數轉換器(ADC)),并對系統(tǒng)其余部分實施隔離串行鏈路,如圖1所示。該鏈路可以是一個局部總線(如SPI),也可以是工業(yè)協(xié)議(如RS-485),用以將測量數據長距離傳輸至單元。

圖1. 用隔離前端測量高壓電池組中單個電池的電壓

圖1. 用隔離前端測量高壓電池組中單個電池的電壓

可靠性設計

直到大約10年前,光耦合器仍然是隔離數字信號的少數可行解決方案之一。然而,如果問一問不得不用光耦合器進行設計的工程師,您就會了解到,用光耦合器開發(fā)高效、可靠的系統(tǒng)是多么的困難,尤其是需要將成本降至最低時。光耦合器使用LED來產生跨越隔離柵的光,以接通和關閉光電晶體管。在用光耦合器進行設計時,必須保證LED能產生足夠的光來接通接收光電晶體管,同時,輸出上升和下降時間也要足夠快,以支持目標頻率下的操作。光耦合器最重要的一個規(guī)格是電流傳輸比 (CTR)。CTR是光電晶體管上出現的集電極電流與通過LED的電流的比值。

光耦合器 CTR不但擁有極寬的容差,而且性能會隨著時間和溫度而下降。為了確保光耦合器能在高溫下使用數年之后繼續(xù)工作,工程師必須假設最差情況下的CTR,這本身就極具挑戰(zhàn)性,因為光耦合器數據手冊只列出了室溫下的 CTR規(guī)格。例如,典型光耦合器的規(guī)格表列出了25°C下50%–600%的保證CTR。另外,大多數數據手冊都包含典型圖表,顯示80°C時的CTR僅為20°C時的 CTR的大約 50%。事實上,沒有數據手冊會列出 85°C時的最小CRT,因此,您必須對該值做出假設。另外,有些研究對 CTR隨時間發(fā)生的下降進行了模擬,但該規(guī)格同樣未列于數據手冊中,因此,您必須決定增加多少額外的設計裕量,以保證最終產品能在預期壽命范圍內可靠地運行。設計一個魯棒的隔離器電路意味著,您必須做出許多工程設計假設,需要在增加的功耗和降低的工作速度之間取舍,留出足夠的裕量以便產品在整個壽命期間可靠運行。

使用非光學方式來橫跨隔離柵發(fā)送數據。例如,ADI公司的隔離器采用微變壓器技術來橫跨隔離柵發(fā)送脈沖,不存在與光耦合器相關聯(lián)的時間和溫度下降效應。這樣,可以針對器件的整個工作溫度范圍發(fā)布保證最低和最大功耗、傳播延遲和脈沖失真規(guī)格。有了完整的規(guī)格,就不需要在您的工作條件下對光耦合器進行廣泛的特性測試,可以直接使用數據手冊中的數據來計算最差情況下的系統(tǒng)性能。您只用看看數字隔離器的保證傳播延遲、偏斜和功耗,即可利用這些數據來計算頂層系統(tǒng)時序規(guī)格,就像任何標準數字集成電路一樣。也可使用其他非光學技術,例如容性、射頻(RF)和巨磁阻 (GMR)耦合。

表1.ADI公司ADuM140x系列數字隔離器的監(jiān)管機構認證。

ULCSAVDETÜV

1577器件認可程序認可雙重/加強絕緣, 2500 Vrms隔離電壓CSA元件驗收通知#5A批準 基本絕緣符合CSA 60950-1-03和IEC 60950-1標準,800 V rms(1131 V峰值)最大工作電壓;加強絕緣符合CSA 60950-1-03和IEC 60950-1標準,400 V rms(566 V峰值)最大工作電壓DIN V VDE V 0884-10 (VDE V 0884-10):2006-12認證加強絕緣,560 V峰值通過IEC 61010-1:2001(第2版)、 EN 61010-1:2001(第2版)、 UL 61010-1:2004和 CSA C22.2.61010.1:2005標準認證加強絕緣,400 V rms最大工作電壓

由于磁性數字隔離器大部分功率消耗于從一個狀態(tài)切換至另一狀態(tài)時,故功耗與工作頻率呈比例關系。因此,處于空閑狀態(tài)或者開關速度極低的通道功耗非常小。一旦已確定應用的最大串行時鐘速率,即可設計電源來提供支持該速率的充足電流。在利用光耦合器進行設計時,必須確保LED處于關閉狀態(tài)時電路始終處于空閑狀態(tài),以將功耗降至最低。

光耦合器技術進入市場已超過30年;一些工程師對轉向新的隔離器技術保持謹慎。大多數制造商都要將產品提交監(jiān)管機構批準,并清楚展示其隔離器通過了哪些標準。諸如ADI公司數字隔離器的器件均以聚酰亞胺為絕緣體,這種材料也用于許多光耦合器之中。在某些情況下,它們是按照與光耦合器相同的安全標準進行測試,而在其他情況下(如VDE V 0884-10),則專門針對數字隔離器制定了具體標準。例如,表1展示了ADuM140x系列隔離器的機構認證。

其他問題涉及數字隔離器承受過壓浪涌的能力,以及它們對共模電壓和磁場干擾形式的瞬變的抗干擾能力。幸運的是,借助聚酰亞胺絕緣材料,ADI公司的數字隔離器可以承受最高6 kV的浪涌達10秒。由于隔離柵上只有極低的寄生電容,因此,磁性隔離器相對于其他技術還具有極佳的共模瞬變抗擾度(CMTI)。例如,典型高速光耦合器的CMTI規(guī)格為1至10 kV/μs,而磁性數字隔離器可抑制35 kV/μs以上的共模瞬變。

乍一看,對磁場干擾的擔心似乎非常合理,因為采用微變壓器的隔離器利用磁場來橫跨隔離柵發(fā)射脈沖。有人可能認為,足夠強的磁場可能會干擾脈沖,從而導致輸出錯誤。然而,由于變壓器及其空芯的半徑非常小,因此只有非常大的磁場或極高的頻率才能產生故障。圖2所示的最大容許電流和頻率仍可以保證AD344x隔離器的輸出無故障。例如,只有超過500 A(1 MHz,距離器件 5 mm)的電流才可能觸發(fā)故障輸出。理論上,產生錯誤輸出所需要的幅度和頻率組合遠遠超過了絕大多數應用的范圍。

接地電阻相關文章:接地電阻測試方法


隔離器相關文章:隔離器原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉