新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 極點(diǎn)跟隨的LDO穩(wěn)壓器頻率補(bǔ)償方法的研究

極點(diǎn)跟隨的LDO穩(wěn)壓器頻率補(bǔ)償方法的研究

作者: 時(shí)間:2013-02-23 來(lái)源:網(wǎng)絡(luò) 收藏

采用了極點(diǎn)跟隨頻率補(bǔ)償?shù)腖DO穩(wěn)壓器

  輸出電流監(jiān)測(cè)電路中的MP3與LDO穩(wěn)壓器的電壓調(diào)整管Mpass的源、柵極驅(qū)動(dòng)電壓相等,且由于運(yùn)放OPA輸入端“虛短”特性,MP3的漏極(OPA正向輸入端)電壓等于Mpass的漏極(OPA負(fù)向輸入端)電壓,故有:

公式

  對(duì)照式(3)與式(13),可以看到,P1/P2獨(dú)立于Io,故圖2中的LDO穩(wěn)壓器獲得了在整個(gè)負(fù)載變化范圍內(nèi)的頻率穩(wěn)定性。

  4 仿真結(jié)果與討論

  采用TSMC 0.18 μm混合信號(hào)Spice模型,和高精度仿真工具HSpice,對(duì)圖2中的LDO穩(wěn)壓器進(jìn)行了設(shè)計(jì)與仿真驗(yàn)證。在Co=1 μF,Io=100 mA的條件下,環(huán)路增益T的幅頻與相頻響應(yīng)的仿真結(jié)果如圖3所示,在單位環(huán)增益頻率內(nèi),幅頻特性與單極點(diǎn)系統(tǒng)相同,以-20 dB/dec的速度衰減,相位裕度大于80°。

環(huán)路增益T的幅頻與相頻響應(yīng)的仿真結(jié)果

  圖4為輸出電流Io在20 ns內(nèi)由0跳變?yōu)?00 mA時(shí),LDO穩(wěn)壓器輸出電壓Vo的瞬態(tài)響應(yīng)。由圖4可以看到,Vo從空載到滿載的轉(zhuǎn)換時(shí)間約為0.5μs。如此良好的瞬態(tài)響應(yīng)是由于極點(diǎn)跟隨頻率補(bǔ)償具有以下優(yōu)點(diǎn):極點(diǎn)P1對(duì)P2的跟隨,減小了P1的附加相移,增加了相位裕度,則由式(1),有利于減小過(guò)沖導(dǎo)致的輸出電壓振鈴現(xiàn)象;無(wú)需引入零點(diǎn),因而避免了零、極點(diǎn)對(duì)造成的輸出電壓穩(wěn)定時(shí)間的增加;對(duì)帶寬沒(méi)有限制,且無(wú)需米勒頻率補(bǔ)償電容,則由式(7),有利于減小環(huán)路延時(shí)。此外,電壓緩沖器中的甲乙類推拉結(jié)構(gòu)和動(dòng)態(tài)電流,對(duì)提高響應(yīng)速度也有很大幫助。

LDO穩(wěn)壓器輸出電壓Vo的瞬態(tài)響應(yīng)

  最后需要說(shuō)明的是,對(duì)輸出電壓Vo進(jìn)行的直流掃描結(jié)果表明,Vo在整個(gè)輸出電流范圍內(nèi)的變化較大,約為4 %。經(jīng)分析,主要由以下因素造成:圖2中的寬帶壓差放大器的非對(duì)稱結(jié)構(gòu)引入了較大的輸入失調(diào)電壓;雙極器件的基極電流,以及NPN型器件與PNP型器件參數(shù)(放大倍數(shù)等)的差異引入的誤差。通過(guò)改用對(duì)稱結(jié)構(gòu)的低失調(diào)壓差放大器,并將雙極器件替換為MOS器件,可提高LDO穩(wěn)壓器的精度。但是由于低失調(diào)壓差放大器引入的低頻極點(diǎn),以及MOS器件的低跨導(dǎo)造成的P1的頻率降低,會(huì)減小相位裕度,所以應(yīng)避免在壓差放大器中采用電流鏡(引入鏡極點(diǎn))或共源共柵(增加節(jié)點(diǎn)電阻)等結(jié)構(gòu),并適當(dāng)提高電壓緩沖器中器件的尺寸和偏置電流。

  本文提出的極點(diǎn)跟隨的頻率補(bǔ)償方法,提供了LDO穩(wěn)壓器良好的頻率穩(wěn)定性和瞬態(tài)響應(yīng),且無(wú)需芯片上頻率補(bǔ)償電路,因而不僅適用于高負(fù)載變化響應(yīng)速度的單芯片LDO穩(wěn)壓器,在集成電源管理和片上系統(tǒng)(SOC)方面,也有較好的應(yīng)用前景。


上一頁(yè) 1 2 3 下一頁(yè)

關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉