工程師不可不知的開關(guān)電源關(guān)鍵設(shè)計(jì)(六)
對(duì)于正向和負(fù)向尖峰,對(duì)稱的波形是同樣需要的,因此從它可以看出控制部分和電源部分在控制內(nèi)有中心線,且在負(fù)載的增大和減少的情況下它們的擺動(dòng)速率是相同的。
上面介紹了開關(guān)電源控制環(huán)路的兩個(gè)穩(wěn)定性判據(jù),就是通過波特圖判定小信號(hào)下開關(guān)電源控制環(huán)路的相位裕度和通過負(fù)載躍變瞬態(tài)響應(yīng)波形判定大信號(hào)下開關(guān)電源控制環(huán)路的穩(wěn)定性。下面介紹四種控制環(huán)路穩(wěn)定性的設(shè)計(jì)方法。
4 穩(wěn)定性設(shè)計(jì)方法
4.1 分析法
根據(jù)閉環(huán)系統(tǒng)的理論、數(shù)學(xué)及電路模型進(jìn)行分析(計(jì)算機(jī)仿真)。實(shí)際上進(jìn)行總體分析時(shí),要求所有的參數(shù)要精確地等于規(guī)定值是不大可能的,尤其是電感值,在整個(gè)電流變化范圍內(nèi),電感值不可能保持常數(shù)。同樣,能改變系統(tǒng)線性工作的較大瞬態(tài)響應(yīng)也是很難預(yù)料到的。
4.2 試探法
首先測(cè)量好脈寬調(diào)整器和功率變換器部分的傳遞特性,然后用“差分技術(shù)”來確定補(bǔ)償控制放大器所必須具有的特性。
要想使實(shí)際的放大器完全滿足最優(yōu)特性是不大可能的,主要的目標(biāo)是實(shí)現(xiàn)盡可能地接近。具體步驟如下:
?。?)找到開環(huán)曲線中極點(diǎn)過零處所對(duì)應(yīng)的頻率,在補(bǔ)償網(wǎng)絡(luò)中相應(yīng)的頻率周圍處引入零點(diǎn),那么在直到等于穿越頻率的范圍內(nèi)相移小于315°(相位裕度至少為45°);
?。?)找到開環(huán)曲線中EsR零點(diǎn)對(duì)應(yīng)的頻率,在補(bǔ)償網(wǎng)絡(luò)中相應(yīng)的頻率周圍處引入極點(diǎn)(否則這些零點(diǎn)將使增益特性變平,且不能按照期望下降);
?。?)如果低頻增益太低,無法得到期望的直流校正那么可以引入一對(duì)零極點(diǎn)以提高低頻下的增益。
大多數(shù)情況下,需要進(jìn)行“微調(diào)”,最好的辦法是采用瞬態(tài)負(fù)載測(cè)量法。
4. 3 經(jīng)驗(yàn)法
采用這種方法,是控制環(huán)路采用具有低頻主導(dǎo)極點(diǎn)的過補(bǔ)償控制放大器組成閉環(huán)來獲得初始穩(wěn)定性。然后采用瞬時(shí)脈沖負(fù)載方法來補(bǔ)償網(wǎng)絡(luò)進(jìn)行動(dòng)態(tài)優(yōu)化,這種方法快而有效。其缺點(diǎn)是無法確定性能的最優(yōu)。
4.4 計(jì)算和測(cè)量結(jié)合方法
綜合以上三點(diǎn),主要取決于設(shè)計(jì)人員的技能和經(jīng)驗(yàn)。
對(duì)于用上述方法設(shè)計(jì)完成的電源可以用下列方法測(cè)量閉環(huán)開關(guān)電源系統(tǒng)的波特圖,測(cè)量步驟如下。
如圖4所示為測(cè)量閉環(huán)電源系統(tǒng)波特圖的增益和相位時(shí)采用的一個(gè)常用方法,此方法的特點(diǎn)是無需改動(dòng)原線路。
如圖4所示,振蕩器通過變壓器T1引入一個(gè)很小的串聯(lián)型電壓V3至環(huán)路。流入控制放大器的有效交流電壓由電壓表V1測(cè)量,輸出端的交流電壓則由電壓表V2測(cè)量(電容器C1和C2起隔直流電流的作用)。V2/V1(以分貝形式)為系統(tǒng)的電壓增益。相位差就是整個(gè)環(huán)路的相移(在考慮到固定的180°負(fù)反饋反相位之后)。
輸入信號(hào)電平必須足夠小,以使全部控制環(huán)路都在其正常的線性范圍內(nèi)工作。
4.5 測(cè)量設(shè)備
波特圖的測(cè)量設(shè)備如下:
(1)一個(gè)可調(diào)頻率的振蕩器V3,頻率范圍從10Hz(或更低)到50kHz(或更高);
(2)兩個(gè)窄帶且可選擇顯示峰值或有效值的電壓表V1和V2,其適用頻率與振蕩器頻率范圍相同;
?。?)專業(yè)的增益及相位測(cè)量?jī)x表。
測(cè)試點(diǎn)的選擇:理論上講,可以在環(huán)路的任意點(diǎn)上進(jìn)行伯特圖測(cè)量,但是,為了獲得好的測(cè)量度,信號(hào)注入節(jié)點(diǎn)的選擇時(shí)必須兼顧兩點(diǎn):電源阻抗較低且下一級(jí)的輸入阻抗較高。而且,必須有一個(gè)單一的信號(hào)通道。實(shí)踐中,一般可把測(cè)量變壓器接入到圖4或圖5控制環(huán)路中接入測(cè)量變壓器的位置。
圖4中T1的位置滿足了上述的標(biāo)準(zhǔn)。電源阻抗(在信號(hào)注入的方向上)是電源部分的低輸出阻抗,而下一級(jí)的輸入阻抗是控制放大器A1的高輸入阻抗。圖5中信號(hào)注入的第二個(gè)位置也同樣滿足這一標(biāo)準(zhǔn),它位于圖5中低輸出的放大器A1和高輸入阻抗的脈寬調(diào)制器之間。
5 最佳拓?fù)浣Y(jié)構(gòu)
無論是國(guó)外還是國(guó)內(nèi)DC/DC電源線路的設(shè)計(jì),就隔離方式來講都可歸結(jié)為兩種最基本的形式:前置啟動(dòng)+前置PWM控制和后置隔離啟動(dòng)+后置PWM控制。具體結(jié)構(gòu)框圖如圖6和圖7所示。
國(guó)內(nèi)外DC/DC電源設(shè)計(jì)大多采用前置啟動(dòng)+前置PWM控制方式,后級(jí)以開關(guān)形式將采樣比較的誤差信號(hào)通過光電耦合器件隔離傳輸?shù)角凹?jí)PWM電路進(jìn)行脈沖寬度的調(diào)節(jié),進(jìn)而實(shí)現(xiàn)整體DC/DC電源穩(wěn)壓控制。如圖6所示,前置啟動(dòng)+前置PWM控制方式框圖所示,輸出電壓的穩(wěn)定過程是:輸出誤差采樣→比較→放大→光隔離傳輸→PWM電路誤差比較→PWM調(diào)寬→輸出穩(wěn)壓。Interpoint公司的MHF+系列、SMHF系列、MSA系列、MHV系列等等產(chǎn)品都屬于此種控制方式。此類拓?fù)浣Y(jié)構(gòu)電源產(chǎn)品就環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)主要集中在如下各部分:
(1)以集成電路U2為核心的采樣、比較電路的環(huán)路補(bǔ)償設(shè)計(jì);
?。?)以前置PWM集成電路內(nèi)部電壓比較器為核心的環(huán)路補(bǔ)償設(shè)計(jì);
(3)輸出濾波器設(shè)計(jì)主要考慮輸出電壓/電流特性,在隔離式電源環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)時(shí)僅供參考;
?。?)其它部分如功率管驅(qū)動(dòng)、主功率變壓器等,在隔離式電源環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)時(shí)可以不必考慮。
而如圖7所示,后置隔離啟動(dòng)+后置PWM控制方式框圖,輸出電壓的穩(wěn)定過程是:輸出誤差采樣→PWM電路誤差比較→PWM調(diào)寬→隔離驅(qū)動(dòng)→輸出穩(wěn)壓。此類拓?fù)浣Y(jié)構(gòu)電源產(chǎn)品就環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)主要集中在如下各部分:
?。?)以后置PWM集成電路內(nèi)部電壓比較器為核心的環(huán)路補(bǔ)償設(shè)計(jì);
?。?)輸出濾波器設(shè)計(jì)主要考慮輸出電壓/電流特性,在隔離式電源環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)時(shí)僅供參考。
(3)其它部分如隔離啟動(dòng)、主功率變壓器等,在隔離式電源環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)時(shí)可以不必考慮。
比較圖6和圖7控制方式和環(huán)路穩(wěn)定性補(bǔ)償設(shè)計(jì)可知,圖7后置隔離啟動(dòng)+后置PWM控制方式的優(yōu)點(diǎn)如下:
?。?)減少了后級(jí)采樣、比較、放大和光電耦合,控制環(huán)路簡(jiǎn)捷;
?。?)只需對(duì)后置PWM集成電路內(nèi)部電壓比較器進(jìn)行環(huán)路補(bǔ)償設(shè)計(jì),控制環(huán)路的響應(yīng)頻率較寬;
?。?)相位裕度大;
(4)負(fù)載瞬態(tài)特性好;
(5)輸入瞬態(tài)特性好;
?。?)抗輻照能力強(qiáng)。實(shí)驗(yàn)證明光電耦合器件即使進(jìn)行了抗輻照加固其抗輻照總劑量也不會(huì)大于2x104Rad(Si),不適合航天電源高可靠、長(zhǎng)壽命的應(yīng)用要求。
6 結(jié)語(yǔ)
開關(guān)電源設(shè)計(jì)重點(diǎn)有兩點(diǎn):一是磁路設(shè)計(jì),重點(diǎn)解決的是從輸入到輸出的電壓及功率變換問題。二是穩(wěn)定性設(shè)計(jì),重點(diǎn)解決的是輸出電壓的品質(zhì)問題。開關(guān)電源穩(wěn)定性設(shè)計(jì)的好壞直接決定著開關(guān)電源啟動(dòng)特性、輸入電壓躍變響應(yīng)特性、負(fù)載躍變響應(yīng)特性、高低溫穩(wěn)定性、生產(chǎn)和調(diào)試難易度。將上述開關(guān)電源穩(wěn)定性設(shè)計(jì)方法和結(jié)論應(yīng)用到開關(guān)電源的研發(fā)工作中去,定能事半功倍。
四、基于UC3875的全橋軟開關(guān)直流電源設(shè)計(jì)
PWM是英文“Pulse Width Modulation”的縮寫,簡(jiǎn)稱脈寬調(diào)制,是利用微處理器的數(shù)字輸出來對(duì)模擬電路進(jìn)行控制的一種非常有效的技術(shù),廣泛應(yīng)用在從測(cè)量、通信到功率控制與變換的許多領(lǐng)域中。UCC3895是美國(guó)德州儀器公司生產(chǎn)的移相諧振全橋軟開關(guān)控制器,該系列控制器采用了先進(jìn)的BCDMOS技術(shù)。 UCC3895在基本功能上與UC3875系列和UC3879系列控制器完全相同,同時(shí)增加了一些新的功能。
本文介紹了一臺(tái)采用移相諧振控制芯片UC3875作為控制核心設(shè)計(jì)的開關(guān)頻率為70kHz、輸出功率1.2kW、主電路為移相全橋ZVZCS PWM軟開關(guān)模式的直流開關(guān)電源。
l 移相式ZVZCSPWM軟開關(guān)電源主電路分析
在設(shè)計(jì)制作的1.2kW(480V/2.5A)的軟開關(guān)電源中,其主電路為全橋變換器結(jié)構(gòu),四只開關(guān)管均為MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂開關(guān)管實(shí)現(xiàn)ZVS、滯后臂開關(guān)管實(shí)現(xiàn)ZCS,電路結(jié)構(gòu)簡(jiǎn)圖如圖l,VT1~VT4是全橋變換器的四只MOSFET開關(guān)管,VD1、VD2分別是超前臂開關(guān)管VT1、VT2的反并超快恢復(fù)二極管,C1、C2分別是為了實(shí)現(xiàn)VTl、VT2的ZVS設(shè)置的高頻電容,VD3、VD4是反向電流阻斷二極管,以實(shí)現(xiàn)滯后臂VT3、VT4的ZCS,Llk為變壓器漏感,Cb為阻斷電容,T為主變壓器,副邊由VD5~VD8構(gòu)成的高頻整流電路以及Lf、C3、C4等濾波器件組成。
其基本工作原理如下:
當(dāng)開關(guān)管VT1、VT4或VT2、VT3同時(shí)導(dǎo)通時(shí),電路工作情況與全橋變換器的硬開關(guān)工作模式情況一樣,主變壓器原邊向負(fù)載提供能量。通過移相控制,在關(guān)斷VT1時(shí)并不馬上關(guān)斷VT4,而是根據(jù)輸出反饋信號(hào)決定的移相角,經(jīng)過一定時(shí)間后再關(guān)斷VT4,在關(guān)斷VT1之前,由于VT1導(dǎo)通,其并聯(lián)電容C1上電壓等于VT1的導(dǎo)通壓降,理想狀況下其值為零,當(dāng)關(guān)斷VT1時(shí)刻,C1開始充電,由于電容電壓不能突變,因此,VT1即是零電壓關(guān)斷。
由于變壓器漏感L1k以及副邊整流濾波電感的作用,VT1關(guān)斷后,原邊電流不能突變,繼續(xù)給Cb充電,同時(shí)C2也通過原邊放電,當(dāng)C2電壓降到零后,VD2自然導(dǎo)通,這時(shí)開通VT2,則VT2即是零電壓開通。
當(dāng)C1充滿電、C2放電完畢后,由于VD2是導(dǎo)通的,此時(shí)加在變壓器原邊繞組和漏感上的電壓為阻斷電容Cb兩端電壓,原邊電流開始減小,但繼續(xù)給Cb充電,直到原邊電流為零,這時(shí)由于VD4的阻斷作用,電容Cb不能通過VT2、VT4、VD4進(jìn)行放電,Cb兩端電壓維持不變,這時(shí)流過VT4電流為零,關(guān)斷VT4即是零電流關(guān)斷。
關(guān)斷VT4以后,經(jīng)過預(yù)先設(shè)置的死區(qū)時(shí)間后開通VT3,由于電壓器漏感的存在,原邊電流不能突變,因此VT3即是零電流開通。
VT2、VT3同時(shí)導(dǎo)通后原邊向負(fù)載提供能量,一定時(shí)間后關(guān)斷VT2,由于C2的存在,VT2是零電壓關(guān)斷,如同前面分析,原邊電流這時(shí)不能突變,C1經(jīng)過VD3、VT3、Cb放電完畢后,VD1自然導(dǎo)通,此時(shí)開通VT1即是零電壓開通,由于VD3的阻斷,原邊電流降為零以后,關(guān)斷VT3,則VT3即是零電流關(guān)斷,經(jīng)過預(yù)選設(shè)置好的死區(qū)時(shí)間延遲后開通VT4,由于變壓器漏感及副邊濾波電感的作用,原邊電流不能突變,VT4即是零電流開通。
這種采用超快恢復(fù)二極管阻斷原邊反向電流方式的移相式ZVZCS PWM全橋變換器拓?fù)涞睦硐牍ぷ鞑ㄐ稳鐖D2所示,其中Uab表示主電路圖3中a、b兩點(diǎn)之間的電壓,ip為變壓器T原邊電流,Ucb為阻斷電容Ub上的電壓,Urect是副邊整流后的電壓。
2 基于UC3875的主控制回路設(shè)計(jì)
為了實(shí)現(xiàn)主回路開關(guān)管ZVZCS軟開關(guān),采用UC3875為其設(shè)計(jì)了PWM移相控制電路,如圖3所示??紤]到所選MOSFET功率比較大對(duì)芯片的四個(gè)輸出驅(qū)動(dòng)信號(hào)進(jìn)行了功率放大,再經(jīng)高頻脈沖變壓器T1、T2隔離最后經(jīng)過驅(qū)動(dòng)電路驅(qū)動(dòng)MOSFET開關(guān)管。整個(gè)控制系統(tǒng)所有供電均用同一個(gè)15V直流電源,實(shí)驗(yàn)中設(shè)置開關(guān)頻率為70kHz,死區(qū)時(shí)間設(shè)置為1.5μs,采用簡(jiǎn)單的電壓控制模式,電源輸出直流電壓通過采樣電路、光電隔離電路后形成控制信號(hào),輸入到UC3875誤差放大器的EA一,控制UC3875誤差放大器的輸出,從而控制芯片四個(gè)輸出之間的移相角大小,使電源能夠穩(wěn)定工作,圖中R6、C5接在EA一和E/AOUT之間構(gòu)成PI控制。在本設(shè)計(jì)中把CS+端用作故障保護(hù)電路,當(dāng)發(fā)生輸出過壓、輸出過流、高頻變?cè)呥^流、開關(guān)管過熱等故障時(shí),通過一定的轉(zhuǎn)換電路,把故障信號(hào)轉(zhuǎn)換為高于2.5V的電壓接到CS+端,使UC3875四個(gè)輸出驅(qū)動(dòng)信號(hào)全為低電平,對(duì)電路實(shí)現(xiàn)保護(hù)。
圖4是開關(guān)管的驅(qū)動(dòng)電路。隔離變壓器的設(shè)計(jì)采用AP法、變比為l:1.3的三繞組變壓器。UC3875輸出的單極性脈沖經(jīng)過放大電路、隔離電路和驅(qū)動(dòng)電路后形成+12V/一5V的雙極性驅(qū)動(dòng)脈沖,保證開關(guān)管的穩(wěn)定開通和關(guān)斷。
3 仿真與實(shí)驗(yàn)結(jié)果分析
PSpice是一款功能強(qiáng)大的電路分析軟件,對(duì)開關(guān)頻率70kHz的ZVZCS軟開關(guān)電源的仿真是在PSpice9.1平臺(tái)上進(jìn)行的。
實(shí)驗(yàn)樣機(jī)的主回路結(jié)構(gòu)采用圖1所示的電路拓?fù)?,阻斷二極管采用超快恢復(fù)大功率二極管RHRG30120,其反向恢復(fù)時(shí)間在100ns以內(nèi),滿足70kHz開關(guān)頻率的要求。開關(guān)管MOSFET采用IXYS公司的IXFK24N100開關(guān)管,這種型號(hào)MOS管自身反并有超快恢復(fù)二極管,其反向恢復(fù)時(shí)間約250ns。
圖5是超前橋臂開關(guān)管驅(qū)動(dòng)電壓與管壓降波形圖,(a)為仿真波形、(b)為實(shí)驗(yàn)波形,可見超前臂開關(guān)管完全實(shí)現(xiàn)了ZVS開通,VT1、VT2關(guān)斷時(shí)是依賴其自身很小的結(jié)電容來實(shí)現(xiàn)的,從圖中可以看出,關(guān)斷時(shí)也基本實(shí)現(xiàn)了ZVS關(guān)斷。
圖6是滯后橋臂開關(guān)管驅(qū)動(dòng)電壓與電流波形圖,(a)為仿真波形、(b)為實(shí)驗(yàn)波形;圖7是滯后臂開關(guān)管管壓降與電流波形圖,(a)為仿真波形、(b)為實(shí)驗(yàn)波形,從圖6、圖7可以看出滯后臂開關(guān)管VT3、VT4很好地實(shí)現(xiàn)了ZCS關(guān)斷,關(guān)斷時(shí)開關(guān)管電流已經(jīng)為零;滯后臂開關(guān)管完全開通之前,開關(guān)管電流也幾乎為零,基本實(shí)現(xiàn)了ZCS開通。而且滯后橋臂開關(guān)管VT3、VT4可以在很大負(fù)載范圍內(nèi)實(shí)現(xiàn)ZCS開關(guān)。
圖8是兩橋臂中點(diǎn)之間的電壓Uab的波形圖,(a)為仿真波形、(b)為實(shí)驗(yàn)波形。圖9是阻斷電容Cb上的電壓U曲波形,(a)為仿真波形、(b)為實(shí)驗(yàn)波形。從圖上可以看出,由于有Ucb的存在,Uab不是一個(gè)方波。當(dāng)Uab=0時(shí),阻斷電容Cb上的電壓Ucb使原邊電流ip逐漸減小到零,由于阻斷二極管的阻斷作用,ip不能反向流動(dòng),從而實(shí)現(xiàn)了滯后橋臂的ZCS開關(guān)。
4 結(jié)論
本文在介紹了移相諧振控制芯片UC3875的工作特點(diǎn)并詳細(xì)分析了采用串聯(lián)阻斷二極管的移相式ZVZCS PWM軟開關(guān)工作特性的基礎(chǔ)上,設(shè)計(jì)了一臺(tái)1.2kW、開關(guān)頻率70kHz的全橋軟開關(guān)直流電源,并應(yīng)用PSpice軟件進(jìn)行了仿真,實(shí)驗(yàn)結(jié)果與仿真結(jié)果基本符合。實(shí)驗(yàn)表明以UC3875為核心的控制部分結(jié)構(gòu)簡(jiǎn)單可靠,電源主電路開關(guān)管均實(shí)現(xiàn)了軟開關(guān),并克服了單純的ZVS或ZCS軟開關(guān)模式的缺點(diǎn),可有效減小開關(guān)管開關(guān)過程引起的損耗,有利于提高電源開關(guān)頻率,減小電源體積和重量。
五、開關(guān)電源紋波產(chǎn)生分析
隨著SWITCH 的開關(guān),電感L 中的電流也是在輸出電流的有效值上下波動(dòng)的。所以在輸出端也會(huì)出現(xiàn)一個(gè)與SWITCH 同頻率的紋波,一般所說的紋波就是指這個(gè)。它與輸出電容的容量和ESR 有關(guān)系。這個(gè)紋波的頻率與開關(guān)電源相同,為幾十到幾百KHz。
另外,SWITCH 一般選用雙極性晶體管或者M(jìn)OSFET,不管是哪種,在其導(dǎo)通和截止的時(shí)候,都會(huì)有一個(gè)上升時(shí)間和下降時(shí)間。這時(shí)候在電路中就會(huì)出現(xiàn)一個(gè)與SWITCH 上升下降時(shí)間的頻率相同或者奇數(shù)倍頻的噪聲,一般為幾十MHz。同樣二極管D 在反向恢復(fù)瞬間,其等效電路為電阻電容和電感的串聯(lián),會(huì)引起諧振,產(chǎn)生的噪聲頻率也為幾十MHz。這兩種噪聲一般叫做高頻噪聲,幅值通常要比紋波大得多。
如果是AC/DC 變換器,除了上述兩種紋波(噪聲)以外,還有AC 噪聲,頻率是輸入AC 電源的頻率,為50~60Hz 左右。還有一種共模噪聲,是由于很多開關(guān)電源的功率器件使用外殼作為散熱器,產(chǎn)生的等效電容導(dǎo)致的。因?yàn)楸救耸亲銎囯娮友邪l(fā)的,對(duì)于后兩種噪聲接觸較少,所以暫不考慮。
開關(guān)電源紋波的測(cè)量
基本要求:使用示波器AC 耦合,20MHz 帶寬限制,拔掉探頭的地線
1,AC 耦合是去掉疊加的直流電壓,得到準(zhǔn)確的波形。
2,打開20MHz 帶寬限制是防止高頻噪聲的干擾,防止測(cè)出錯(cuò)誤的結(jié)果。因?yàn)楦哳l成分幅值較大,測(cè)量的時(shí)候應(yīng)除去。
3,拔掉示波器探頭的接地夾,使用接地環(huán)測(cè)量,是為了減少干擾。很多部門沒有接地環(huán),如果誤差允許也直接用探頭的接地夾測(cè)量。但在判斷是否合格時(shí)要考慮這個(gè)因素。
還有一點(diǎn)是要使用50Ω 終端。橫河示波器的資料上介紹說,50Ω 模塊是除去DC 成分,精確測(cè)量AC 成分。但是很少有示波器配這種專門的探頭,大多數(shù)情況是使用標(biāo)配100KΩ 到10MΩ 的探頭測(cè)量,影響暫時(shí)不清楚。
上面是測(cè)量開關(guān)紋波時(shí)基本的注意事項(xiàng)。如果示波器探頭不是直接接觸輸出點(diǎn),應(yīng)該用雙絞線,或者50Ω 同軸電纜方式測(cè)量。
在測(cè)量高頻噪聲時(shí),使用示波器的全通帶,一般為幾百兆到GHz 級(jí)別。其他與上述相同。
可能不同的公司有不同的測(cè)試方法。歸根到底第一要清楚自己的測(cè)試結(jié)果。第二要得到客戶認(rèn)可。
關(guān)于示波器:
有些數(shù)字示波器因?yàn)楦蓴_和存儲(chǔ)深度的原因,無法正確的測(cè)量出紋波。這時(shí)應(yīng)更換示波器。這方面有時(shí)候雖然老的模擬示波器帶寬只有幾十兆,但表現(xiàn)要比數(shù)字示波器好。泰克公司有專門分開測(cè)量上述兩種紋波(噪聲)的軟件,可以看一下參考資料5。同樣,關(guān)于示波器的接地,電源測(cè)試的相關(guān)知識(shí),也可以看一下。
開關(guān)電源紋波的抑制
對(duì)于開關(guān)紋波,理論上和實(shí)際上都是一定存在的。通常抑制或減少它的做法有三種:
1,加大電感和輸出電容濾波
根據(jù)開關(guān)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。
同樣,輸出紋波與輸出電容的關(guān)系:vripple=Imax/(Co×f)??梢钥闯?,加大輸出電容值可以減小紋波。
通常的做法,對(duì)于輸出電容,使用鋁電解電容以達(dá)到大容量的目的。但是電解電容在抑制高頻噪聲方面效果不是很好,而且ESR 也比較大,所以會(huì)在它旁邊并聯(lián)一個(gè)陶瓷電容,來彌補(bǔ)鋁電解電容的不足。
同時(shí),開關(guān)電源工作時(shí),輸入端的電壓Vin 不變,但是電流是隨開關(guān)變化的。這時(shí)輸入電源不會(huì)很好地提供電流,通常在靠近電流輸入端(以BucK 型為例,是SWITcH 附近),并聯(lián)電容來提供電流。
上面這種做法對(duì)減小紋波的作用是有限的。因?yàn)轶w積限制,電感不會(huì)做的很大;輸出電容增加到一定程度,對(duì)減小紋波就沒有明顯的效果了;增加開關(guān)頻率,又會(huì)增加開關(guān)損失。所以在要求比較嚴(yán)格時(shí),這種方法并不是很好。關(guān)于開關(guān)電源的原理等,可以參考各類開關(guān)電源設(shè)計(jì)手冊(cè)。
2,二級(jí)濾波,就是再加一級(jí)LC 濾波器
LC 濾波器對(duì)噪紋波的抑制作用比較明顯,根據(jù)要除去的紋波頻率選擇合適的電感電容構(gòu)成濾波電路,一般能夠很好的減小紋波。
采樣點(diǎn)選在LC 濾波器之前(Pa),輸出電壓會(huì)降低。因?yàn)槿魏坞姼卸加幸粋€(gè)直流電阻,當(dāng)有電流輸出時(shí),在電感上會(huì)有壓降產(chǎn)生,導(dǎo)致電源的輸出電壓降低。而且這個(gè)壓降是隨輸出電流變化的。
采樣點(diǎn)選在LC 濾波器之后(Pb),這樣輸出電壓就是我們所希望得到的電壓。但是這樣在電源系統(tǒng)內(nèi)部引入了一個(gè)電感和一個(gè)電容,有可能會(huì)導(dǎo)致系統(tǒng)不穩(wěn)定。關(guān)于系統(tǒng)穩(wěn)定,很多資料有介紹,這里不詳細(xì)寫了。
3,開關(guān)電源輸出之后,接LDO 濾波
這是減少紋波和噪聲最有效的辦法,輸出電壓恒定,不需要改變?cè)械姆答佅到y(tǒng),但也是成本最高,功耗最高的辦法。任何一款LDO 都有一項(xiàng)指標(biāo):噪音抑制比。是一條頻率-dB 曲線,如右圖是凌特公司LT3024 的曲線。
對(duì)減小紋波。開關(guān)電源的PCB 布線也非常關(guān)鍵,這是個(gè)很赫手的問題。有專門的開關(guān)電源PCB 工程師,對(duì)于高頻噪聲,由于頻率高幅值較大,后級(jí)濾波雖然有一定作用,但效果不明顯。這方面有專門的研究,簡(jiǎn)單的做法是在二極管上并電容C 或RC,或串聯(lián)電感。
4,在二極管上并電容C 或RC
二極管高速導(dǎo)通截止時(shí),要考慮寄生參數(shù)。在二極管反向恢復(fù)期間,等效電感和等效電容成為一個(gè)RC 振蕩器,產(chǎn)生高頻振蕩。為了抑制這種高頻振蕩,需在二極管兩端并聯(lián)電容C或RC 緩沖網(wǎng)絡(luò)。電阻一般取10Ω-100Ω,電容取4.7pF-2.2nF。
在二極管上并聯(lián)的電容C 或者RC,其取值要經(jīng)過反復(fù)試驗(yàn)才能確定。如果選用不當(dāng),反而會(huì)造成更嚴(yán)重的振蕩。
對(duì)高頻噪聲要求嚴(yán)格的話,可以采用軟開關(guān)技術(shù)。關(guān)于軟開關(guān),有很多書專門介紹。
5,二極管后接電感(EMI 濾波)
這也是常用的抑制高頻噪聲的方法。針對(duì)產(chǎn)生噪聲的頻率,選擇合適的電感元件,同樣能夠有效地抑制噪聲。需要注意的是,電感的額定電流要滿足實(shí)際的要求。
六、開關(guān)電源PCB排版基本要點(diǎn)分析
摘要:開關(guān)電源PCB排版是開發(fā)電源產(chǎn)品中的一個(gè)重要過程。許多情況下,一個(gè)在紙上設(shè)計(jì)得非常完美的電源可能在初次調(diào)試時(shí)無法正常工作,原因是該電源的PCB排版存在著許多問題.詳細(xì)討論了開關(guān)電源PCB排版的基本要點(diǎn),并描述了一些實(shí)用的PCB排版例子。
0 引言
為了適應(yīng)電子產(chǎn)品飛快的更新?lián)Q代節(jié)奏,產(chǎn)品設(shè)計(jì)工程師更傾向于選擇在市場(chǎng)上很容易采購(gòu)到的AC/DC適配器,并把多組直流電源直接安裝在系統(tǒng)的線路板上。由于開關(guān)電源產(chǎn)生的電磁干擾會(huì)影響到其電子產(chǎn)品的正常工作,正確的電源PCB排版就變得非常重要。開關(guān)電源PCB排版與數(shù)字電路PCB排版完全不一樣。在數(shù)字電路排版中,許多數(shù)字芯片可以通過PCB軟件來自動(dòng)排列,且芯片之間的連接線可以通過PCB軟件來自動(dòng)連接。用自動(dòng)排版方式排出的開關(guān)電源肯定無法正常工作。所以,沒計(jì)人員需要對(duì)開關(guān)電源PCB排版基本規(guī)則和開關(guān)電源工作原理有一定的了解。
1 開關(guān)電源PCB排版基本要點(diǎn)
l.1 電容高頻濾波特性
圖1是電容器基本結(jié)構(gòu)和高頻等效模型。
電容的基本公式是
式(1)顯示,減小電容器極板之間的距離(d)和增加極板的截面積(A)將增加電容器的電容量。
電容通常存在等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)二個(gè)寄生參數(shù)。圖2是電容器在不同工作頻率下的阻抗(Zc)。
一個(gè)電容器的諧振頻率(fo)可以從它自身電容量(C)和等效串聯(lián)電感量(LESL)得到,即
當(dāng)一個(gè)電容器工作頻率在fo以下時(shí),其阻抗隨頻率的上升而減小,即
當(dāng)電容器工作頻率在fo以上時(shí),其阻抗會(huì)隨頻率的上升而增加,即
當(dāng)電容器工作頻率接近fo時(shí),電容阻抗就等于它的等效串聯(lián)電阻(RESR)。
逆變器相關(guān)文章:逆變器原理
電容器相關(guān)文章:電容器原理
互感器相關(guān)文章:互感器原理
濾波器相關(guān)文章:濾波器原理
dc相關(guān)文章:dc是什么
pwm相關(guān)文章:pwm是什么
濾波器相關(guān)文章:濾波器原理
逆變器相關(guān)文章:逆變器工作原理
比較器相關(guān)文章:比較器工作原理
霍爾傳感器相關(guān)文章:霍爾傳感器工作原理
電源濾波器相關(guān)文章:電源濾波器原理
電流傳感器相關(guān)文章:電流傳感器原理 霍爾傳感器相關(guān)文章:霍爾傳感器原理 漏電開關(guān)相關(guān)文章:漏電開關(guān)原理 脈寬調(diào)制相關(guān)文章:脈寬調(diào)制原理 雙絞線傳輸器相關(guān)文章:雙絞線傳輸器原理 熔斷器相關(guān)文章:熔斷器原理
評(píng)論