高頻電源變壓器的設計原則,要求和程序
降低成本是促進高頻電源變壓器技術發(fā)展的一種推動力。為什么輕、薄、短、小成為高頻電源變壓器的發(fā)展方向?原因之一是這樣既能降低材料成本,又能降低制造成本。提高工作頻率,可以使高頻電源變壓器的重量和體積下降。但是,要克服高頻帶來的負面影響,必須采用新的軟磁材料和導電材料并增加抑制高頻電磁干擾的措施,因此,對具體使用條件下的高頻電源變壓器究竟選用多高的工作頻率?要在綜合考慮性能和總體成本后決定。提高效率,降低損耗發(fā)生的熱量,可以減少高頻電源變壓器散熱的表面積,從而使體積和重量下降。但是,降低損耗必須采用新材料和新工藝。因此,對具體使用條件下的高頻電源變壓器究竟達到多高的效率?也要在綜合考慮性能和總體成本后決定。
高頻電源變壓器的設計程序,包括磁芯材料,磁芯結構,磁芯參數(shù),線圈參數(shù),組裝結構和溫升校核等內容。下面分別進行討論。
4.1 磁芯材料
根據高頻電源變壓器的設計要求,選擇軟磁材料本來應當是設計程序的第一項。但是,現(xiàn)在一般都認為高頻電源變壓器應當選擇軟磁鐵氧體,是自然而然的事情。許多有關高頻電源變壓器的論文,專著和教材,只針對軟磁鐵氧體進行討論,而對其他軟磁材料有時說明一下,有時只字不提。而且究竟選擇哪一類軟磁鐵氧體,也不加以說明,好象大家都知道。《電源技術應用》2003年第6期中的兩篇文章就是一例。
和任何軟磁磁芯材料一樣,軟磁鐵氧體有自己的優(yōu)缺點。軟磁鐵氧體的優(yōu)點是電阻率高、交流渦流損耗小,價格便宜,易加工成各種形狀的磁芯。缺點是工作磁通密度低,磁導率不高,磁致伸縮大,對溫度變化比較敏感。因此,有些高頻電源變壓器并不適合選擇軟磁鐵氧體。例如,工作頻率比較低(50kHz以下),功率比較大的高頻電源變壓器,如果選擇軟磁鐵氧體,由于工作磁通密度低,用材料多,磁芯體積大,加工困難,易碎,成品率不高,顯不出價格便宜的優(yōu)勢。又例如,工作頻率高(500kHz以上),功率比較小的高頻電源變壓器,磁芯重量和體積本來都小,如果選擇軟磁鐵氧體,必須用PW4、PW5類材料,價格也不便宜,與其他軟磁材料相比,磁芯價格基本相當,有時反而由于體積大,而處于不利地位。即使在適合于軟磁鐵氧體的工作頻率范圍內,也要對選擇哪一類軟磁鐵氧體更能全面滿足高頻電源變壓器的設計要求,進行認真考慮,才可以使設計出來的高頻電源變壓器達到比較理想的性能價格比。
4.2 磁芯結構
高頻電源變壓器設計中選擇磁芯結構時考慮的因素有:降低漏磁和漏感,增加線圈散熱面積,有利于屏蔽,線圈繞線容易,裝配接線方便等。
漏磁和漏感與磁芯結構有直接關系。如果磁芯不需要氣隙,則盡可能采用封閉的環(huán)形和方框型結構磁芯,特別是工作頻率高的電源變壓器,因為,有一點漏感,就容易產生比較大的漏阻抗。封閉磁芯的磁通基本上集中在磁芯里面,漏磁小。同時,不論外界干擾磁場從哪個方向侵入,都在磁芯中分為兩個方向通過,產生的干擾互相抵消。但是,封閉磁芯繞線困難,且環(huán)形磁芯散熱要通過線圈,而且內層引出線也要穿過線圈引出,故必須加強絕緣。不封閉磁芯繞線容易,磁芯散熱面大,可直接散熱,引出線也容易。建議裝線圈的磁路部分為圓柱形截面,減少平均匝長,降低損耗。矮胖圓柱形磁芯的漏磁和漏感比瘦高圓柱形磁芯大,一個原因是胖,圓柱形大,漏磁輻射面大;另一個原因是矮,上下兩磁軛距離近,容易形成漏磁通的路徑。不封閉磁芯中的氣隙大小和位置與漏磁和漏感有密切關系。在保證完成功能所需的氣隙條件下,盡可能減少氣隙尺寸。因為,氣隙尺寸增大,不但增加漏磁和漏感,還減少等值磁導率,增加激磁功率,對高頻電源變壓器工作不利。另外,氣隙的位置最好處于線圈的中間部位,可以起到減少氣隙漏磁通的作用。
窗口面積的大小與線圈發(fā)熱損耗和散熱面積有關。窗口面積大,繞的電磁線截面大,電阻小,損耗小,發(fā)熱小。同時,線圈外形尺寸大,散熱面積也大。“辨析”一文中提出窗口面積利用問題,不能采取完全肯定和完全否定的態(tài)度。一般在留足工藝需要的窗口面積以后,希望盡可能把窗口面積繞滿。如果不能充分利用窗口面積,將會造成磁芯尺寸和變壓器外形尺寸不必要的增大,有可能要增加材料成本。因此,在高頻電源變壓器磁芯結構設計中,對窗口面積的大小,要綜合考慮各種因素后來決定。“辨析”一文中關于填滿磁芯窗口主要是受工頻磁性元件設計的影響的理由并不成立。工頻變壓器的銅損比鐵損大,為了增加線圈散熱面積,磁芯與線圈之間留有足夠的氣隙,有時原繞組和副繞組之間也留有氣隙。而不是“強調鐵芯和繞組的整體性,因而不希望鐵芯與繞組中間有氣隙”。也不是“設計成繞組填滿整個窗口,從而保證其機械穩(wěn)定性”。線圈和磁芯既然不是一個整體,必須分別用夾件固緊,才能保證各自的機械穩(wěn)定性。同時,為了保證足夠的絕緣距離,線圈兩端和繞組之間都必須留有氣隙,不可能用繞組填滿整個窗口。
為了防止高頻電源變壓器從里向外和從外向里的電磁干擾,有些磁芯結構在窗口外面有封閉和半封閉的外殼。封閉外殼屏蔽電磁干擾作用好,但散熱和接線不方便,必須留有接線孔和出氣孔。半封閉外殼,封閉的地方起屏蔽電磁干擾作用,不封閉的地方用于接線和散熱。窗口完全開放,接線和散熱方便,屏蔽電磁干擾作用差。
4.3 磁芯參數(shù)
高頻電源變壓器磁芯參數(shù)設計中,要特別注意工作磁通密度不只是受磁化曲線限制,還要受損耗的限制,同時還與功率傳送的工作方式有關。
對變壓器功率傳送方式的磁通單方向變化工作模式,ΔB=Bm-Br,既受飽和磁通密度限制,又更主要地是受損耗限制。但是單方向變化的高頻電源變壓器工作時,沿局部磁滯回線來回變化,磁芯損耗比雙方向變化沿大的磁滯回線來回變化小,只有它的30%~40%。而材料測試時是按正弦波雙向激磁條件下變化的ΔB為2Bm進行的。因此,Bm可以取材料測試損耗值時,選取的B值高一倍以上。Br受材料磁滯回線上的Br限制,可以用開氣隙的辦法來降低Br,以增大磁通密度變化值ΔB。雖然開氣隙后,激磁電流有所增加,但增大ΔB后可以減少磁芯體積,還是值得的。對變壓器功率傳送方式磁通雙方向變化工作模式,ΔB=2Bm,工作的磁滯回線包圍的面積比局部回線大得多,損耗也大得多,Bm主要受損耗限制,在雙方向變化工作模式中,還要注意由于各種原因造成激磁的正負變化的伏秒面積不相等,而出現(xiàn)直流偏磁問題。可以在磁芯磁路中加一個小氣隙,或者在電路設計時加隔直流電容,或者采用電流型控制來解決。
對電感器功率傳送方式,磁導率是有氣隙后的等值磁導率,一般都比磁化曲線測出的磁導率小??梢栽诖_定磁芯結構后,直接測試它。“設計要點”一文中的高頻電源變壓器采用電感器功率傳送方式。不知道為什么不提選用的磁導率,而提BAC或者Bm?也不提BAC或Bm與損耗的關系?
4.4 線圈參數(shù)
高頻電源變壓器設計的線圈參數(shù)包括:匝數(shù),導線截面(直徑),導線形式,繞組排列和絕緣安排。
原繞組匝數(shù)根據外加激磁電壓或者原繞組激磁電感(儲存能量)來決定,匝數(shù)不能過多,也不能過少。如果匝數(shù)過多,會增加漏感和繞線工時;如果匝數(shù)過少,在外加激磁電壓比較高時,有可能使匝間電壓降和層間電壓降增大,而必須加強絕緣。
電子鎮(zhèn)流器相關文章:電子鎮(zhèn)流器工作原理
評論