一種高精度BiCMOS電流模帶隙基準源
1.2 新型BiCMOS帶隙基準電路的設計
常見的電流模帶隙電路結構在運算放大器的輸入兩端加入阻值相等的分流電阻,輸出基準由2個電流的和電流通過電阻獲得可以獲得相對小的基準電壓,這種結構的基準電路存在第三簡并態(tài)的問題。由于第三簡并態(tài)的存在使電流?;鶞孰娐返膽檬艿胶艽笙拗?。本設計采用電流模結構帶隙基準來得到任意大小的輸出電壓,并且通過特殊的結構消除第三簡并態(tài)的問題。通過增加修調電路對輸出電壓進行微調,提高了基準源的精度。帶隙基準源核心電路如圖2所示。
圖2中各個MOS管具有相同的長寬比。晶體管Q1與Q2發(fā)射極面積相同、Q3與Q4發(fā)射極面積相同、Q1與Q3的發(fā)射極面積比為1:n。Rs和Rt為修調電阻。放大器AMP1和AMP2處于深度負反饋。AMP1使得a和b兩點的電壓相等,而AMP2使得電壓VR2等于Vbe3。通過M1、Q1、Q2支路和M2、Q3、Q4支路的電流相等設為I1。通過M6、R2支路的電流設為I2??傻玫饺缦碌谋磉_式:
式中:I1具有正的溫度系數(shù),I2具有負的溫度系數(shù)。I2和I2分別鏡像到M3和M7求和后得到不隨溫度變化的基準電流。此電流通過R3,R4以及修調電阻Rs,Rt產生基準電壓Vref。由于IC工藝的隨機性,薄膜電阻會有(10%的變化,所以本設計用外部修調電路對輸出基準電壓進行精確控制,通過激光修調或數(shù)字電路控制修調電阻的個數(shù)可以對輸出電壓進行微調。作為一般結論考慮串聯(lián)電阻Rs個數(shù)為x,并聯(lián)電阻Rt的個數(shù)為y,得到:
通過式(6)可知,調節(jié)R2/R1的值,使Vref的溫度系數(shù)近似為零。通過增大串聯(lián)電阻Rs個數(shù)x來增大Vref,而增加并聯(lián)電阻Rt的個數(shù)y達到減小Vref的目的。
AMP1的反向輸入端串聯(lián)2個(而不是一個)正向二極管接地起到了減少噪聲的作用,亦可以抑制放大器的失調電壓對Vref的影響。為了進一步減小運放失調對參考電壓的影響,可以考慮較大的Q1、Q3發(fā)射結面積比值。此外,由于引入了修調電路,輸出電壓Vref可以穩(wěn)定在0.5 V。
1.3 次級電壓的生成
為了改善電源抑制比,不直接用主電源來供電,而是使用主電源電壓Vcc來產生一個次電壓Vcc1來供電(如圖2所示),以提高這種新型帶隙基準電路的電源抑制比。其電路如圖3所示。
該電路中,AMP3處于深度負反饋狀態(tài),根據運放虛短原理可知電容C的作用是去除電源電壓交流成分的影響。
1.4 電路啟動及簡并點分析
因為常規(guī)電流模帶隙結構引入了新的電流通道,使每支路都有2個電流通道,因此存在著第三種可能的簡并態(tài)。文獻給出了解決第三簡并態(tài)的解決辦法,但是其啟動電路復雜。本設計實現(xiàn)電流模結構的同時沒有引入額外的電流通路,故只存在2個簡并態(tài):零點態(tài)和工作態(tài)。所以,所需啟動電路簡單,其結構如圖4所示。
圖4中M點與核心電路中AMP1輸出端的M點相連,當AMP1輸出高電平時,核心電路中各PMOS不能導通。這時啟動電路通過反相器的作用使M10導通,M10的漏端接核心電路中的a點,從而M10開始對a點充電,使電路脫離零電流狀態(tài)。電路導通以后,M點輸出低電平使M10關斷,啟動電路從主電路脫離。
1.5 電路中運算放大器的設計
本設計中考慮放大器的重要性能指標是開環(huán)直流增益大、電源抑制比高。運放結構如圖5所示,采用兩級放大結構:第一級是雙端輸入單端輸出的以共源共柵PMOS為負載的折疊共源共柵結構;第二級為共源放大(兩級中間用電容做補償)。這樣的結構提供足夠高的直流增益,同時共源共柵負載的應用,不僅提高了開環(huán)直流增益而且增大了電源抑制比。
評論