新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 太陽能發(fā)電系統(tǒng)對(duì)半導(dǎo)體器件的需求分析

太陽能發(fā)電系統(tǒng)對(duì)半導(dǎo)體器件的需求分析

作者: 時(shí)間:2009-07-08 來源:網(wǎng)絡(luò) 收藏

  (1) 電網(wǎng)管理網(wǎng)絡(luò);

  (2) 以太網(wǎng)端口;

  (3) AD轉(zhuǎn)換器;

  (4) PWM發(fā)生器;

  (5) 逆變器控制器;

  (6) IGBT模塊以及逆變器;

  (7) 電池板方位角和高度角轉(zhuǎn)向電機(jī)及其控制裝置;

  從功率分立來看,隨著并網(wǎng)站規(guī)模的增大,采用1200V IGBT將是未來的發(fā)展趨勢(shì)。針對(duì)各種不同規(guī)格的逆變器的,IGBT模塊呈現(xiàn)集成度越來越高的發(fā)展趨勢(shì)。

  值得關(guān)注的是,為了獲得更高的轉(zhuǎn)換效率,采用SiC二極管來設(shè)計(jì)逆變器是最新的發(fā)展趨勢(shì)。原因在于:(1) SiC的導(dǎo)熱率是砷化鎵的幾倍,也超過了Si的三倍,這將可以制造出更高電流密度的;(2) SiC的擊穿電場(chǎng)幾乎是Si擊穿電場(chǎng)的十倍,所以,采用SiC的相同設(shè)計(jì)將獲得硅元件十倍的額定擊穿電壓,因此,有可能開發(fā)出非常高電壓的肖特基二極管;(3) SiC是一種寬能帶材料,因此,相對(duì)于任何硅而言,SiC可在高得多的溫度下工作。

  此外,因?yàn)樘柲芪⑿湍孀兤餍枰O(jiān)測(cè)電流、電壓、溫度等模擬參數(shù),具有模擬和數(shù)字混合信號(hào)處理能力的微控制器有望在這里找到用武之地。

  利用新材料提高光電轉(zhuǎn)換效率

  太陽能電池為未來大規(guī)模提供了巨大商機(jī),但目前大部分太陽能電池的輸出功率相對(duì)較低,典型的輸出效率在15%%左右。

  “太陽每天產(chǎn)生的太陽能為165,000太瓦特(TeraWatt),我們只要能從中獲取極小的一部分能量,就能朝解決能源危機(jī)問題邁進(jìn)一大步”,IMCE首席運(yùn)營(yíng)官Luc Van den hove表示,“我們現(xiàn)在面臨的最大技術(shù)挑戰(zhàn)是如何降低電陽能電池的成本和提高其效率。” IMEC的太陽能電池開發(fā)計(jì)劃的計(jì)劃表是,到2011年120微米晶硅電池的效率有望達(dá)到20%;到2015年,厚度為80微米的晶硅太陽能電池的效率將高于20%。其技術(shù)的發(fā)展思路是,提高材料的吸收系數(shù),使之接近太陽能光譜的最大光子通量,并具有較高遷移率。此外,通過采用旋涂工藝涂覆該材料,改善其薄膜形貌,從而提高載流子遷移率和可重復(fù)性。

  另一方面,荷蘭戴夫特理工大學(xué)和物質(zhì)基礎(chǔ)研究基金會(huì)研究人員指出,非常小的特定晶體會(huì)產(chǎn)生電子的“雪崩效應(yīng)”。在傳統(tǒng)的太陽能電池中,1個(gè)光子只能精確地釋出1個(gè)電子,而在某些納米晶體中,1個(gè)光子可釋出2個(gè)或3個(gè)電子,這就是所謂的“雪崩效應(yīng)”。這些釋出的自由電子能夠確保太陽能電池運(yùn)作并提供電力。釋出的電子越多,太陽能電池的輸出功率也越大。這種物理效應(yīng)為生產(chǎn)廉價(jià)的、高輸出功率的太陽能電池鋪平了道路,從而有望利用納米晶體(晶體尺寸在納米范圍內(nèi))來制造新型太陽能電池。此次的新發(fā)現(xiàn)表明,理論上由半導(dǎo)體納米晶體組成的太陽能電池的最大輸出能源效率將可能達(dá)到44%,同時(shí)有助于減少生產(chǎn)成本。

  此外,IBM不久前聲稱他們已經(jīng)在實(shí)驗(yàn)室實(shí)現(xiàn)了從1平方厘米的太陽能電池板上提取230W的能量,并最終獲得70W可用電力的技術(shù)。其技術(shù)細(xì)節(jié)不祥。


上一頁 1 2 3 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉