新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 突破新興高效能電源要求上的限制(圖)

突破新興高效能電源要求上的限制(圖)

作者: 時間:2007-10-30 來源:網(wǎng)絡(luò) 收藏

美國環(huán)保署(EPA)的能源之星(Energy Star)計劃在2007年7月20日正式開始實施,這是針對個人電腦在不同負載下最低效能的規(guī)范。同時,它也為其他設(shè)備,包括企業(yè)服務(wù)器、外部(使用在如游戲機或筆記本電腦等)以及一系列家用設(shè)備規(guī)劃或制定了類似的。由于能源之星在制定時都會和其他國家和地區(qū)的同類機構(gòu)合作,因此它已在這些國家得到了采用。


在降低功耗上舉足輕重,因此面對法規(guī)標準和消費者的更高時,重新檢討其設(shè)計方式就顯得非常急迫。雖然可以改進傳統(tǒng)的拓撲結(jié)構(gòu)來達到更能要求,但可以明顯地看出,沿用舊式設(shè)計方式的產(chǎn)品,其性價比將會低。在本文中,我們將提出兩個能符合更能要求,并可控制目標成本的設(shè)計方式,并將之和傳統(tǒng)的拓撲結(jié)構(gòu)進行比較。

傳統(tǒng)的拓撲結(jié)構(gòu)


為特定應(yīng)用選擇拓撲結(jié)構(gòu)時有幾個考慮因素,包括輸入電壓范圍是全球通用還是只針對特定地區(qū),輸出電壓是單一還是多重(電流大小也是重要的條件),效能目標,特別是在不同負載下的效能表現(xiàn)。傳統(tǒng)上,在大批量生產(chǎn)時多以成本,設(shè)計工程師對拓撲結(jié)構(gòu)的熟悉度以及元件是否容易采購為考慮因素,其他因素還包括設(shè)計是否容易實現(xiàn)和設(shè)計方式是否在電源產(chǎn)業(yè)鏈中為大家所熟知等。


較受歡迎的傳統(tǒng)設(shè)計方式主要為單開關(guān)正向、雙開關(guān)正向和半橋結(jié)構(gòu),這些結(jié)構(gòu)提供了滿足目前需求的穩(wěn)固解決方案。不過如上所述,的標準需要電源能夠達成比先前更高的效能。過去,典型的臺式電腦電源可以達到60%~70%的最能,但現(xiàn)在則要求電源在額定負載的20%、50%和100%時都能達到最低80%的效能。同時,最近更出現(xiàn)了希望能夠在低于20%負載時達到70%或以上效能的趨勢,且待機功耗能夠持續(xù)下降。我們將探討三種傳統(tǒng)拓撲的優(yōu)缺點,并介紹兩種新型的拓撲。


1 單開關(guān)正向


圖1中的這個拓撲相當受到歡迎,主要原因是元件數(shù)少且設(shè)計要求簡單,但對于不同負載情況的高效能要求卻為這個拓撲帶來新挑戰(zhàn)。在接近滿載或滿載時,這個拓撲的效能受到50%占空比的。而在較輕負載時,開關(guān)耗損是造成效能不佳的主要原因。許多較新的設(shè)計采用功率因數(shù)校正(PFC)前端來降低諧波電流,在400 V的PFC輸出電壓下,單開關(guān)正向方式被迫使用大于900 V的開關(guān),提高了FET的成本。

圖1 單開關(guān)正向拓補


2 雙開關(guān)正向


圖2是另一個使用相當普遍的拓撲,它是解決開關(guān)電壓問題的升級版本。這依舊是一個會有高開關(guān)耗損的硬開關(guān)電路。其所帶來的問題是需要使用門極驅(qū)動變壓器或芯片驅(qū)動電路來推動高電壓端MOSFET。

圖2 雙開關(guān)正向拓補


3 半橋


圖3中的半橋變壓器是高功率要求的另一個選擇。和單開關(guān)或雙開關(guān)正向變壓器相反,半橋變壓器可以在兩個象限工作并降低原邊FET的電流。變壓器組成結(jié)構(gòu)和輸出整流比單一正向拓撲結(jié)構(gòu)復(fù)雜,也存在高開關(guān)耗損問題。

圖3 半橋拓補電路結(jié)構(gòu)

拓撲結(jié)構(gòu)


為了符合更高效能的要求,業(yè)界已開發(fā)了數(shù)種新的拓撲結(jié)構(gòu)。這些新電路拓撲不一定是指新發(fā)明,而是新近在商業(yè)大批量應(yīng)用的。其中,兩種最受重視的拓撲分別為有源鉗位正激和雙電感加電容(LLC)。


1 有源鉗位正激


圖4中的有源鉗位正激拓撲是一個存在已久的軟開關(guān)結(jié)構(gòu),雖然這種結(jié)構(gòu)和傳統(tǒng)的正向式拓撲結(jié)構(gòu)類似,但過去一直被視為是難以實現(xiàn)的結(jié)構(gòu),因此主要應(yīng)用在特殊領(lǐng)域,比如電信領(lǐng)域。不過,隨著新IC的推出,這種結(jié)構(gòu)的實現(xiàn)變得非常簡單。

圖4 采用安森美半導(dǎo)體NCP1562的有源鉗位正激拓補結(jié)構(gòu)


在這個拓撲結(jié)構(gòu)中,變壓器在主開關(guān)的整個關(guān)閉時間內(nèi)通過附屬開關(guān)串行的電容進行復(fù)位,這樣做可以消除單開關(guān)正向結(jié)構(gòu)中的無效時間。它的主要優(yōu)點包括低開關(guān)耗損,可在50%以上占空比工作,降低了原邊開關(guān)的電流應(yīng)力。同時,這個結(jié)構(gòu)也提供了自驅(qū)動同步整流功能,省去了專用門極驅(qū)動電路。加之低電壓MOSFET越來越低的價格,采用MOSFET和同步整流已經(jīng)成為實現(xiàn)低輸出電壓高電流整流的可行方案。


使用有源鉗位器件和進行有源鉗位FET的控制雖然看起來會增加電路的復(fù)雜度,但卻可以通過節(jié)省緩沖電路、復(fù)位電路和較低整體開關(guān)要求加以補償。這個結(jié)構(gòu)也能夠在寬廣的輸入電壓范圍下工作,因而適合多種應(yīng)用,包括電視游戲機。


這個結(jié)構(gòu)的主要缺點是沒有大批量應(yīng)用,比如在計算機中,因此一般臺式機的設(shè)計工程師對它感到陌生。不過隨著像安森美半導(dǎo)體等公司不斷推出產(chǎn)品,這個拓撲結(jié)構(gòu)的實現(xiàn)難度已經(jīng)降低了。在較大批量應(yīng)用中采用這個結(jié)構(gòu)也能夠降低采用元件的成本。這個拓撲的另一缺點是,和雙開關(guān)正向或半橋變壓器比較,需要較高額定電壓的開關(guān)。


2 LLC諧振半橋


圖5中的LLC拓撲結(jié)構(gòu)特別適用需要高輸出電壓的場合,如液晶和等離子電視等應(yīng)用。

圖5 LLC諧振半橋拓補結(jié)構(gòu)


和有源鉗位拓撲一樣,這也是一款因超低開關(guān)耗損達到超高效能的軟開關(guān)拓撲結(jié)構(gòu)。其他優(yōu)點還包括不需輸出電感,因此可以降低實現(xiàn)的整體成本。最后,由于采用半橋配置,可以降低原邊元件的壓力。


另一方面,這個結(jié)構(gòu)也有一些缺點,最主要的是增加了復(fù)雜的磁性設(shè)計,輸出電容上的高紋波電流和可變頻率。同時,這個結(jié)構(gòu)在設(shè)計較寬輸入電壓范圍上也比較困難。

各式拓撲結(jié)構(gòu)的比較


雖然我們無法采用單一拓撲結(jié)構(gòu)作為所有應(yīng)用的解決方案,但卻可以依具體情況來決定采用何種電路結(jié)構(gòu)。在這里,我們使用12V、20A輸出的變壓器設(shè)計來比較以上所述各式結(jié)構(gòu)的差異,比較重點放在主要的設(shè)計問題,如原邊開關(guān)、整流器、磁性、存儲電容等。雖然還有其他差異點,但不在本文的討論范圍內(nèi)。各式拓撲結(jié)構(gòu)的差異結(jié)構(gòu)總結(jié)如下。


● 原邊開關(guān):在300~400Vdc的輸入電壓范圍,有源鉗位變壓器的原邊峰值電流最低,單開關(guān)和雙開關(guān)正向拓撲則擁有和有源鉗位類似的RMS電流,但卻因MOSFET額定電壓而會有較大的導(dǎo)電耗損。


● 諧振半橋變壓器的直流次級整流器電壓應(yīng)力最低,接著是有源鉗位,然后是單開關(guān)和雙開關(guān)正向變壓器。由于開關(guān)突波的關(guān)系,傳統(tǒng)電路結(jié)構(gòu)上的壓力更高。


● 保持時間要求可以通過增大電容容值或變壓器輸入范圍來達到。


● 在磁性方面,諧振半橋通過移除輸出電感提供明顯的簡化,不過在變壓器設(shè)計上則會有相當高的挑戰(zhàn)性。和傳統(tǒng)正向變壓器比較,有源鉗位變壓器在相同頻率下的輸出電感可以減小約13%。


● 諧振半橋變壓器由于沒有輸出電感,因此輸出電容電流紋波最高。


● 有源鉗位正激變壓器的開關(guān)頻率可以推升到更高(200~300kHz),硬開關(guān)拓撲結(jié)構(gòu)則在150kHz以下。諧振半橋是一個可變頻率的變壓器,在滿載低電源電壓時,其最低頻率通常設(shè)定在60~70kHz;高電源電壓輕載工作時,最高頻率可以達到數(shù)百kHz。



關(guān)鍵詞: 要求 限制 電源 高效 新興 突破

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉