新聞中心

EEPW首頁 > 手機(jī)與無線通信 > 設(shè)計(jì)應(yīng)用 > 射頻波束賦形技術(shù)改善 TD-LTE 蜂窩小區(qū)邊緣性能

射頻波束賦形技術(shù)改善 TD-LTE 蜂窩小區(qū)邊緣性能

作者: 時(shí)間:2013-10-29 來源:電子產(chǎn)品世界 收藏

  我們總結(jié)了一些重要的方面和術(shù)語,用于描述圖 2 中的波束賦形發(fā)射:

本文引用地址:http://butianyuan.cn/article/184734.htm

  •主瓣:主要的最大發(fā)射功率瓣,通常指向目標(biāo)設(shè)備或發(fā)射路徑(該發(fā)射路徑將通過在無線傳播信道中進(jìn)行反射到達(dá)目標(biāo)設(shè)備)。

  •旁瓣:次要的功率發(fā)射瓣,有可能對(duì)服務(wù)小區(qū)或鄰近小區(qū)中的其他用戶設(shè)備產(chǎn)生多余的干擾。

  •功率零點(diǎn):發(fā)射波束方向圖中功率最小的位置,系統(tǒng)可以選擇使用和控制該位置,以減少對(duì)服務(wù)小區(qū)或鄰近小區(qū)中設(shè)備的干擾。

  •主波瓣寬度(Φ):主瓣發(fā)射選擇性,在主瓣兩個(gè) 3 dB 點(diǎn)上方位角寬度的測(cè)量結(jié)果。

  •主瓣至旁瓣的電平:預(yù)期主瓣發(fā)射功率相對(duì)于多余旁瓣發(fā)射功率的選擇性功率差。

  在現(xiàn)代無線蜂窩通信系統(tǒng)中,一個(gè)最大的挑戰(zhàn)是蜂窩小區(qū)邊緣性能。這是波束賦形技術(shù)在提供 LTE 業(yè)務(wù)方面能夠發(fā)揮關(guān)鍵作用的主要原因。圖 3 顯示了兩個(gè)實(shí)際的情景示例,它們均利用了波束賦形的先進(jìn)特性以改善現(xiàn)代蜂窩無線通信系統(tǒng)中的性能。

  圖 3 (a) 為兩個(gè)相鄰的蜂窩小區(qū),每個(gè)蜂窩小區(qū)都與位于兩個(gè)蜂窩小區(qū)之間邊界上的單獨(dú)用戶設(shè)備進(jìn)行通信。此圖顯示,eNB1 正在與目標(biāo)設(shè)備 UE1 通信,eNB1 發(fā)射使用波束賦形來最大限度提高 UE1 方位方向中的信號(hào)功率。同時(shí),我們還可看到,eNB1 正嘗試通過控制 UE2 方向中的功率零點(diǎn)位置,最大限度地減少對(duì) UE2 的干擾。同樣,eNB2 正使用波束賦形最大限度提高其在 UE2 方向上的發(fā)射接收率,同時(shí)減少對(duì) UE1 的干擾。在此情景中,使用波束賦形顯然能夠?yàn)榉涓C小區(qū)邊緣用戶提供非常大的性能改善。必要時(shí),可以使用波束賦形增益來提高蜂窩小區(qū)覆蓋率。

  圖3(b)描述了與兩個(gè)空間分離的設(shè)備(UE3 和 UE4)同時(shí)進(jìn)行的單小區(qū)(eNB3)通信。由于可以獨(dú)立地對(duì)每個(gè)空間多路復(fù)用傳輸層應(yīng)用不同的波束賦形加權(quán)值,所以可以結(jié)合使用空分多址(SDMA) 和 多用戶MIMO(MU-MIMO)傳輸,提供經(jīng)過改善的小區(qū)容量。

  圖4顯示了兩種不同的波束賦形實(shí)施技術(shù)。圖4(a) 中的實(shí)例是固定傳統(tǒng)開關(guān)波束賦形器,其中包括一個(gè) 8 端口 Butler 矩陣波形賦形網(wǎng)絡(luò)。這個(gè)網(wǎng)絡(luò)實(shí)施由不同的可選擇固定時(shí)間或相位時(shí)延路徑矩陣使用 90° 混合耦合器和相移器組合實(shí)施而成。

  產(chǎn)生的固定發(fā)射波束數(shù)量等于用于構(gòu)成 Butler 矩陣網(wǎng)絡(luò)的 N 的數(shù)量。(示例使用了 8 個(gè)天線,產(chǎn)生了 8 條可選擇的波束。)這有時(shí)也稱為“波束網(wǎng)格”的波束賦形網(wǎng)絡(luò),支持選擇任何單獨(dú)的或組合的 N 個(gè)固定發(fā)射波束,以便最大限度提高設(shè)備接收機(jī)的 SINR。

  在無線網(wǎng)絡(luò)中,最佳的 eNB 下行鏈路發(fā)射波束選擇主要取決于對(duì)蜂窩小區(qū)中 UE 位置的了解。這種了解實(shí)際上可通過測(cè)量 eNB 接收天線陣列上的上行鏈路信號(hào)到達(dá)角(AoA)直接獲得,也可從上行鏈路控制信道質(zhì)量反饋信息間接推導(dǎo)得出。

  為了進(jìn)行對(duì)比,圖 4 (b) 顯示了一個(gè)自適應(yīng)波束賦形器實(shí)例。顧名思義,自適應(yīng)波束賦形器能夠不斷地進(jìn)行自適應(yīng)和重新計(jì)算所應(yīng)用的最佳發(fā)射波束賦形復(fù)數(shù)加權(quán)值,從而最好地匹配信道條件。

  因?yàn)樽赃m應(yīng)波束賦形器加權(quán)值不是固定的,所以它不僅能夠優(yōu)化目標(biāo) UE 上的接收 SINR,還能更好地使選擇性和功率零點(diǎn)定位進(jìn)行自適應(yīng),最大限度減少對(duì)其他用戶的干擾。

  在無線網(wǎng)絡(luò)中,eNB 通常會(huì)通過直接測(cè)量在 eNB 接收機(jī)陣列上觀測(cè)到的已接收上行鏈路參考信號(hào)來估算最佳加權(quán)值,隨后可根據(jù)這一信息計(jì)算上行鏈路到達(dá)角(AoA),并分解信道特征矩陣。

  如果是在頻分雙工(FDD)系統(tǒng)中,下行鏈路和上行鏈路使用不同的載波頻率,那么所施加的波束賦形發(fā)射復(fù)數(shù)加權(quán)值將主要取決于測(cè)得或推導(dǎo)的目標(biāo) UE AoA 信息,以及蜂窩小區(qū)中任何其他 UE 的相關(guān)信息。上行鏈路上的 UE 所報(bào)告的信道反饋信息也可為加權(quán)值估算提供幫助。

  如果是在時(shí)分雙工(TDD)系統(tǒng)中,由于下行鏈路和上行鏈路共享相同的載波頻率,所以可以假定信道互易性。因此,TDD 系統(tǒng)中的波束賦形可能比 FDD 系統(tǒng)更出色。所選出的波束賦形發(fā)射復(fù)數(shù)加權(quán)值可以與從 eNB 接收信號(hào)推導(dǎo)出的結(jié)果一樣,最好地匹配分解后的信道特征矩陣向量。這些匹配信道的波束賦形加權(quán)值可幫助優(yōu)化目標(biāo) UE 接收機(jī)上觀測(cè)到的 SINR。eNB 不依賴于上行鏈路上的用戶設(shè)備所提供的信道反饋信息,盡管在實(shí)際上,eNB 波束賦形加權(quán)值估算過程中仍可能會(huì)使用這些信息。



關(guān)鍵詞: Dialog 射頻 TD-LTE LED 天線陣元

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉