新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 16位、300 kSPS低功耗逐次逼近型ADC系統(tǒng)解析

16位、300 kSPS低功耗逐次逼近型ADC系統(tǒng)解析

作者: 時間:2013-03-08 來源:網(wǎng)絡(luò) 收藏

連接/參考器件

本文引用地址:http://butianyuan.cn/article/185461.htm

AD7988-5 16位、500 PulSAR

OP1177精密、低噪聲、低輸入偏置電流運算放大器

ADR435超低噪聲XFET® 5.0 V基準電壓源,具有吸電流和源電流能力

評估和設(shè)計支持

電路評估板

CN-0305電路評估板(EVAL-CN0305-SDPZ)

系統(tǒng)演示平臺(EVAL-SDP-CB1Z)

設(shè)計和集成文件

原理圖、布局文件、物料清單

電路功能與優(yōu)勢

圖1中的電路是一個16位、 逐次逼近型模數(shù)轉(zhuǎn)換器()系統(tǒng),其驅(qū)動放大器針對最高4 kHz輸入信號和 采樣速率、10.75 mW系統(tǒng)而優(yōu)化。

這種方法對于便攜式電池供電、要求的多通道應(yīng)用極為有用。它還為那些兩次轉(zhuǎn)換突發(fā)之間的大部分時間都處于空閑狀態(tài)的應(yīng)用提供了優(yōu)勢。

通常,選擇高性能逐次逼近型ADC的驅(qū)動放大器處理寬范圍的輸入頻率。然而,當某個應(yīng)用需要更低的采樣速率時,便可節(jié)省大量功耗,因為降低采樣速率會相應(yīng)地降低ADC功耗。

若要完全利用通過降低ADC采樣速率使功耗下降的優(yōu)勢,則需要使用低帶寬、放大器。

例如,針對最高輸入約為100 kHz并搭配AD7988-5 16位逐次逼近型寄存器(SAR) ADC(500 kSPS時功耗為3.5 mW, kSPS時功耗為2.1 mW)的應(yīng)用,推薦使用ADA4841-1 80 MHz的運算放大器(10 V時功耗為12 mW)。包括ADR435基準電壓源(7.5 V時功耗為4.65 mW)在內(nèi)的總系統(tǒng)功耗在300 kSPS時為18.75 mW。

對于輸入帶寬低于4 kHz以及采樣速率低于300 kSPS的情況,OP1177 1.3 MHz運算放大器(10 V時功耗為4 mW)可提供出色的信噪比(SNR)和總諧波失真(THD)性能,并且在300 kSPS時可將總系統(tǒng)功耗從18.75 mW降低至10.75 mW,降幅達43%。

圖1. 使用OP1177低功耗放大器驅(qū)動AD7988-5 ADC的系統(tǒng)電路圖(原理示意圖:未顯示所有連接).jpg

圖1. 使用OP1177低功耗放大器驅(qū)動AD7988-5 ADC的系統(tǒng)電路圖(原理示意圖:未顯示所有連接)

電路描述

該電路包含AD7988-5 ADC、OP1177放大器和ADR435基準電壓源。AD7988-5是一款16位、500 kSPS SAR ADC,其低功耗可隨采樣速率調(diào)整,500 kSPS時功耗為3.5 mW。除了低功耗,它還具有業(yè)界領(lǐng)先的交流性能:SNR = 91 dB,THD = −114 dBc。

驅(qū)動放大器采用OP1177低功耗、精密器件,其電源電流為400 μA,增益帶寬積為1.3 MHz。OP1177可采用5 V至30 V的電源供電。ADC的基準電壓源采用ADR435,這是一款高精度、低噪聲、5 V XFET基準電壓源。低電源電流(620 μA)時,ADR435具有極低的溫度系數(shù)(3 ppm/°C)。300 kSPS時,本電路的總功耗為10.75 mW。信噪比(SNR)為90.6 dBFS,總諧波失真(THD)為−102 dBc,輸入頻率最高為4 kHz。

OP1177配置為單位增益緩沖器,并且它與AD7988-5之間有一個截止頻率為295 kHz的RC濾波器(200 Ω,2.7 nF)。濾波器允許使用諸如OP1177等噪聲更高的放大器,在8nV/√Hz下依然具有低得多的功耗。以更高的噪聲換取更低的功耗,而其代價僅是系統(tǒng)的信噪比(SNR)性能下降了0.4 dB。相對于數(shù)據(jù)手冊中推薦的數(shù)值(20 Ω),更高的R值(200 Ω)表示OP1177可以驅(qū)動2.7 nF的大容量輸入電容。更高的R值可將最大輸入帶寬限制為數(shù)kHz,使得失真較低。

對于最高5 kHz的輸入,這與OP1177的16位失真性能(THD低于−100 dBc)差不多。超過5 kHz會加劇失真,因此不建議在更高的輸入頻率下使用該電路,而由于較長的建立時間,亦不建議在多路復(fù)用器應(yīng)用中使用該放大器。注意,OP1177需要至少1.5 V的輸入上裕量/下裕量,并且設(shè)置電源時需要1 V輸出上裕量/下裕量。另外需注意的是,OP1177無法用來驅(qū)動300 kSPS以上的AD7988-5,因為驅(qū)動器建立時間不足以滿足更短的ADC采集時間(見圖3)。

性能結(jié)果

本電路的目的是在輸入頻率低于4 kHz、采樣速率為300 kSPS的情況下,以盡可能最低的ADC驅(qū)動器功耗水平提供良好的交流性能。圖2顯示4 kHz輸入時的電路性能FFT圖。信噪比(SNR)為90.6 dBFS,總諧波失真(THD)為−102 dBc。相比91 dBFS的規(guī)格,AD7988-5的信噪比(SNR)略微下降的主要原因是OP1177具有比ADA4841-1的2 nV/√Hz稍高的噪聲,為8 nV/√Hz??傁到y(tǒng)功耗為10.75 mW,其中:ADC為2.1 mW(采樣速率為300 kSPS),放大器為4 mW,基準電壓源為4.65 mW。這說明相對于ADA4841-1的12 mW,它可降低43%的功耗,總系統(tǒng)功耗為18.75 mW。

圖2. 使用OP1177放大器驅(qū)動AD7988-5的系統(tǒng)電路性能.jpg

圖2. 使用OP1177放大器驅(qū)動AD7988-5的系統(tǒng)電路性能

圖3顯示在超過300 kSPS的較高采樣速率下,系統(tǒng)的總諧波失真(THD)如何增加,以及信噪比(SNR)如何下降?;谶@個理由,讓ADC在300 kSPS或更低條件下工作,可獲得最佳性能。

圖3. OP1177放大器驅(qū)動AD7988-5時,總諧波失真(THD)和信噪比(SNR)與ADC采樣速率的關(guān)系.jpg

圖3. OP1177放大器驅(qū)動AD7988-5時,總諧波失真(THD)和信噪比(SNR)與ADC采樣速率的關(guān)系

圖4顯示隨著輸入頻率超過4 kHz,系統(tǒng)總諧波失真(THD)增加,以及信噪比(SNR)下降。這是由于放大器失真導致的,可從圖5中的總諧波失真加噪聲(THD+N)與頻率的關(guān)系曲線看出。

圖4. OP1177放大器驅(qū)動AD7988-5時,總諧波失真(THD)和信噪比(SNR)與輸入頻率的關(guān)系.jpg
上一頁 1 2 下一頁

關(guān)鍵詞: kSPS 300 ADC 低功耗

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉