用于低噪聲恒流電荷泵的誤差放大器設計
另外,在設計本電路時,還應當設計一些其它的功能模塊,包括:啟動電路、電流采樣、過流保護等電路。
不同于傳統(tǒng)方法,本設計將Gml差分輸入的電源偏置連接在電荷泵的輸出電壓VOUT上,而不是VIN,這就使得此偏置電壓非常穩(wěn)定,其原因在于VOUT的紋波很小,而且噪聲極低。
然而,這種設計也會產(chǎn)生一個問題,即:VOUT在系統(tǒng)上電之初為零,而此時EA又不工作,使得整個電路無法工作,所以,需要增加一個啟動單元,以使系統(tǒng)在剛上電時就可使電荷泵工作,從而使VOUT上升,當VOUT增大到閾值時,EA開始工作。當電路啟動起來以后,電荷泵驅動電壓則由EA輸出控制M22、R4和M24使能開啟電路,而M23、M25、M26和R5將其關斷。
系統(tǒng)中的電流采樣電路采取一個與IGM成正比的小電流IS,此電路由M27、M28、M29和M30組成。應將M27的柵極和電荷泵中電流鏡的柵極相連接,可將采樣比例設定為1:3000。其采樣原理如下:
由于基準電路提供的是一個非常小的偏置電流(大概1μA),那么M28的柵源電壓VGS也就很小,差不多就是其閾值電壓。而M29的寬長比W/L被設計得很大,那么采樣電流IS就很小,則M29的柵源電壓VGS也很小,因此,M27和電荷泵中開關管的VDRAIN差不多大小。其過流保護電路包含M32、M33和M34。這里,M34和電流采樣電路的M31相互鏡像。它是通過采樣電流IS來控制電荷泵中開關管的柵極電壓,因此限制了最大值。在正常范圍內(nèi),IS很小,M32和M34一起驅動,M33的VGATE為高,過流保護單元不工作。當IGM增加時,M34的VDRAIN(或者M33的VGATE)將慢慢減小。當增大到某個值時,M33完全導通,反饋回路將VDRIVER限制在某個值,從而限制IGM,實現(xiàn)過流保護功能。M32、M33和M34的尺寸在設計時應注意匹配。限流工作時,電路形成一個反饋回路,C3作為彌勒補償以使限定電流穩(wěn)定。
為了評估所設計電路的性能,本系統(tǒng)利用Hynix 0.5μm CMOS工藝進行仿真。圖2給出了HSPICE仿真在不同電源電壓下頻率與增益的比較結果,仿真結果表明在很寬的頻率范圍內(nèi).增益超過60 DB。
不同電源電壓下PSRR與頻率的關系及不同IGM下CMRR與頻率的關系分別在圖3和圖4中給出。結果表明,該電路的PSRR和CMRR分別可達到65 DB和70 DB。
為了進一步測定設計的可用性,這里還繪制了一個用到該EA的恒流電荷泵版圖,如圖5所示,以便開展后續(xù)工作。
3 結束語
本文基于對稱OTA結構,設計了一款用于低噪聲恒流電荷泵的誤差放大器EA,即在傳統(tǒng)的設計基礎上引入了動態(tài)頻率補償及彌勒補償。新設計的EA不僅降低了輸出波紋及噪聲,而且改善了穩(wěn)定性。從電路分析和仿真結果可以看到在100 Hz~10 MHz頻率范圍內(nèi),其增益高達60 DB,PSRR為65 DB,而CMRR則高達70 DB,系統(tǒng)達到了較高的性能。
評論