分立元件實(shí)現(xiàn)功放監(jiān)測(cè)與控制
在圖3中,功率檢測(cè)器的輸出VOUT被連接到功放的增益控制端以調(diào)節(jié)功放的增益。功放的輸出電壓驅(qū)動(dòng)天線;定向耦合器對(duì)該方向中的功放輸出電壓進(jìn)行采樣,使其適當(dāng)衰減,并且將其施加到功率檢測(cè)器。將功率檢測(cè)器的輸出,即發(fā)射輸出信號(hào)的均方根測(cè)量結(jié)果同DAC編程的值VSET比較,并且調(diào)節(jié)功放增益,使差值為零。
圖3 功率檢測(cè)
這種增益控制方法可以與信號(hào)路前幾級(jí)中的可變?cè)鲆娣糯笃?VGA)和可變電壓放大器(VVA)結(jié)合使用。為了對(duì)發(fā)射功率和接收功率都進(jìn)行測(cè)量,ADI公司的AD8364雙路功率檢測(cè)器可以同時(shí)測(cè)量兩個(gè)復(fù)合輸入信號(hào)。
如果反饋回路確定出電源線上的電流太大,則向DAC發(fā)出一個(gè)命令,以降低柵極電壓或關(guān)斷此部分。然而,在某些應(yīng)用中,如果高壓電源線上出現(xiàn)電壓尖峰或者超范圍的大電流,那么,由于數(shù)字控制回路檢測(cè)高端電流、將信號(hào)轉(zhuǎn)換為數(shù)字量并且利用外部控制邏輯電路對(duì)數(shù)字量進(jìn)行處理的速度不夠快,因而無法保護(hù)器件不受損壞。
圖4 使用模擬比較器的控制環(huán)路保護(hù)
綜上所述,使用分立元件的一個(gè)典型功放監(jiān)測(cè)和控制結(jié)構(gòu)如圖5所示。其中監(jiān)測(cè)和控制的僅是功放本身,但是這一原理可應(yīng)用于信號(hào)鏈中對(duì)任一放大器的控制。使用主控制器控制所有的分立元件,并且在同一個(gè)I2C數(shù)據(jù)總線上進(jìn)行操作。
圖5采用分立器件實(shí)現(xiàn)功率放大器的監(jiān)測(cè)和控制
根據(jù)信號(hào)鏈的要求,在預(yù)驅(qū)動(dòng)級(jí)和末級(jí)中可能需要很多個(gè)放大器,用于增加天線前端信號(hào)的總功率增益。但是這些附加的功率增益級(jí)對(duì)功放的總效率有不良影響。為了將影響降至最低,必須監(jiān)測(cè)和控制驅(qū)動(dòng)器以優(yōu)化性能。
3 集成監(jiān)測(cè)和控制
為了解決這一衍生問題,ADI公司開發(fā)出AD7294,這是一款集成的監(jiān)測(cè)和控制解決方案。AD7294將電流、電壓和溫度的通用監(jiān)測(cè)和控制所需的所有功能和特性集成到一個(gè)芯片中。
圖6 監(jiān)測(cè)和控制功放級(jí)的集成解決方案
AD7294集成了9通道12-bit ADC和4通道DAC,具有10 mA 灌/源電流能力。它采用0.6 μm DMOS工藝制造,這使電流傳感器能夠測(cè)量高達(dá)59.4 V的共模電平。內(nèi)部ADC提供兩個(gè)專用的電流檢測(cè)通道、兩個(gè)用于檢測(cè)外部溫度的通道、一個(gè)用于檢測(cè)芯片內(nèi)部溫度的通道,以及四個(gè)用于通用監(jiān)測(cè)的非專用ADC輸入通道。
該ADC通道的優(yōu)點(diǎn)在于,其具有遲滯寄存器以及上限和下限寄存器(AD7992/AD7994/AD7998也具有該特性)。用戶可以預(yù)先對(duì)ADC通道的上限和下限進(jìn)行編程;當(dāng)監(jiān)測(cè)的信號(hào)越過這些限制時(shí)產(chǎn)生報(bào)警標(biāo)志。滯后寄存器為用戶提供的功能是,在發(fā)生越限事件時(shí)確定報(bào)警標(biāo)志的重置點(diǎn)。
評(píng)論