開關(guān)電容濾波器的系統(tǒng)設(shè)計與實現(xiàn)
4.1 時鐘發(fā)生模塊
時鐘信號發(fā)生器模塊由頻率跟蹤檢測、參數(shù)讀取、除法器、分頻器和時鐘使能控制等部分構(gòu)成。
1)頻率跟蹤檢測 濾波器在跟蹤工作模式下,PLC需檢測信號的周期。對輸入脈沖周期進行計數(shù),將一個輸入信號周期所占的時鐘周期數(shù)輸出給參數(shù)讀取模塊進行處理,程序較為簡單。
2)參數(shù)讀取 根據(jù)濾波器類型、濾波器逼近函數(shù)和濾波器階數(shù)生成ROM的讀取地址。濾波器在典型和跟蹤工作模式下選擇對應(yīng)的ROM讀取除法器的被除數(shù)或除數(shù);手動工作模式下,被除數(shù)為常數(shù),除數(shù)直接從按鍵的鍵值輸入緩沖區(qū)讀取。由于系統(tǒng)使用2片MAX260,需要4路時鐘,故要讀出4組被除數(shù)和除數(shù)。圖4為參數(shù)讀取模塊的仿真波形,圖中的z1_f,z2_f,z3_f,z4_f為4組被除數(shù),d1_f,d2_f,d3_f,d4_為4組除數(shù)。本文引用地址:http://butianyuan.cn/article/187676.htm
3)除法器 由于PLC采用50 MHz的晶振,輸入的中心頻率(或截止頻率)最大為4 kHz,因此采用26位除法器。由于PLC的除法指令需要占用很大資源,本設(shè)計采用移位相減實現(xiàn)除法運算。除法器的狀態(tài)圖如圖5所示,除法器的算法如下:將被除法從高位開始移入移位寄存器的低位,移位寄存器每移位一次后與除數(shù)相減,結(jié)果大于零則商置1,將相減得到的結(jié)果后接還未移入移位寄存器的被除數(shù)再左移;結(jié)果小于零,則商置零,將原被減數(shù)后接還未移入移位寄存器的被除數(shù)再左移。如此移位相減直至被除數(shù)全部位數(shù)判斷完成,即移位相減26次以后,除法完成。
4)分頻器模塊和時鐘使能 分頻器從除法器的結(jié)果作為分頻系數(shù)對PLC的時鐘頻率分頻,得到各個二階濾波器組件的時鐘信號。時鐘信號產(chǎn)生后并不馬上送入MAX260的時鐘輸入引腳,需檢測到MAX260的編程代碼下載完成后再使能時鐘輸出,下載過程中,時鐘信號保持高阻態(tài),且對未使用的二階濾波器組件,其時鐘信號亦保持高阻態(tài)。
4.2 濾波器編程參數(shù)控制
本系統(tǒng)中濾波器在典型和跟蹤工作模式下的逼近函數(shù)是確定的,故其編程代碼也是確定的,將編程代碼存入存儲器中,根據(jù)濾波器的各參數(shù)讀取編程代碼即可。手動模式下,編程參數(shù)由外部輸入。為方便下載,將4個二階濾波器節(jié)組件的編程代碼組成一個64位的編程控制字。每種逼近函數(shù)的各階低通、高通和帶通濾波器對應(yīng)一個64位的編程控制字,故共有48個編程控制字。每個編程控制字的格式中前8位對應(yīng)第一片MAX260的二階濾波器組件A,第16位至第32位對應(yīng)第一片MAX260的二階濾波器組件B,后32位對應(yīng)第二片MAX260。
控制字的位數(shù)是固定的,與濾波器設(shè)定的階數(shù)無關(guān),即與所使用的二階濾波器組件的個數(shù)無關(guān),未使用的二階濾波器組件的對應(yīng)控制字位置零,由于未使用的二階濾波器組件的時鐘信號保持高阻態(tài),故對其進行寫操作后該組件仍不會工作,不會對總濾波器構(gòu)成影響。當使用第一片MAX260時,控制字的高32位全部置為零,此時控制字將使第二片MAX260進入低功耗的待機模式。
5 結(jié)論
合理地選擇濾波器的類型和階數(shù)是濾波器設(shè)計的第一步,是由不同的應(yīng)用需要,不同的信號與噪聲特點,不同的精度要求來決定?;陔娏ΜF(xiàn)通訊信號的特點,采用6階切比雪夫近似濾波器。通過對濾波器結(jié)構(gòu)的比較,采用低Q結(jié)構(gòu),分析了開關(guān)電容電路和電容編程陣列,最終設(shè)計一個可編程開關(guān)電容6階帶通濾波器;在濾波器設(shè)計中,運放器選擇增益為70 dB,帶寬為10倍時鐘頻率,是合理的性能指標;通過對設(shè)計的開關(guān)電容濾波器進行仿真,結(jié)果基本與設(shè)計目標吻合。
評論