新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 高邊和低邊電流檢測技術(shù)分析

高邊和低邊電流檢測技術(shù)分析

作者: 時間:2010-01-15 來源:網(wǎng)絡(luò) 收藏

對于工作在5V的典型低壓應(yīng)用來說,高邊檢測放大器可采用簡單的儀表放大器(IA)。然而,不同的IA架構(gòu)有著不同的限制,如有限的輸入共模電壓范圍。另外,IA也比較昂貴,而且在較高共模電壓時,低壓IA根本無法工作。因此設(shè)計高壓高邊所需的放大器是一個艱巨的挑戰(zhàn)。

解決這個問題的一個直截了當(dāng)?shù)姆椒?,就是使用簡單的電阻分壓器來降低高邊共模電壓,讓這個共模電壓落在檢測運放的輸入共模范圍內(nèi)。然而,這種方法不僅體積大,成本高,而且像下文說明的那樣還可能無法提供精確的結(jié)果。

讓我們考慮這樣一個例子:在檢測電阻上產(chǎn)生100mV檢測電壓,該電壓寄生在10V的共模電壓上。對應(yīng)100mV滿幅檢測電壓的理想輸出是2.5V,最差精度指標是1%。

采用圖3所示的簡單電阻分壓器可將10V共模電壓減小10倍。

圖3:實現(xiàn)傳統(tǒng)高邊電流檢測的電路。
圖3:實現(xiàn)傳統(tǒng)高邊的電路。

配置為差分放大器的運放A1能很輕松地處理1V共模電壓。但Vsense(100mV)同樣也被縮小了10倍,因此在差分放大器A1的輸入端檢測電壓只有10mV。為了提供要求的2.5V滿刻度電平,還必須引入第二個放大器A2,并設(shè)置為250倍的增益。

值得注意的是,A1的輸入偏移電壓無衰減地出現(xiàn)在其輸出端,同時出現(xiàn)在A2輸入端,然后被放大250倍。由于這些偏移電壓是不相關(guān)的,它們在A2輸入端可能整合為一個平方根和(RSS),并形成等效偏移電壓。假設(shè)兩個運放都有1mV的輸入偏移電壓,那么等效偏移電壓為:

其中VOS_A1和VOS_A2分別是A1和A2的輸入偏移電壓。

因此由上述公式可以得出A2輸出端僅由輸入偏移電壓所引起的誤差電壓為:

250(1.4mV) = 350mV

這樣,運放偏移電壓造成了14%的系統(tǒng)誤差。

電阻比失配對CMRR的影響

第二個主要的誤差源,是來自與放大器A1的電阻臂相關(guān)的公差。A1的CMRR很大程度上取決于電阻增益設(shè)置臂R2/R1和R4/R3之比值。兩個臂中電阻比值即使差1%,也會產(chǎn)生90μV/V的輸出共模增益。

使用1%公差的電阻時,電阻臂比值最大變化為±2%,相當(dāng)于最壞情況下3.6mV/V的共模電壓誤差。這樣,10V的輸入共模電壓變化將在A1輸出端產(chǎn)生高達36mV的誤差(電阻臂變化1%時的誤差為0.9mV)。36mV的誤差顯然是不能接受的,因為它將導(dǎo)致增益為250的A2出現(xiàn)飽和!即使電阻臂比值變化1%也會產(chǎn)生放大的誤差電壓0.9mVx250=225mV。

總誤差

總誤差等于A1輸入偏移電壓、A2輸入偏移電壓、以及由電阻精度引起的誤差電壓的RSS總和。如上所述,電阻%1的精度變化加上10V的共模電壓變化本身就會產(chǎn)生最大36mV的誤差,并使A2飽和。假設(shè)電阻臂R2/R1和R4/R3之間的比值只變化1%,輸出誤差也將高達0.9mV。因此總的RSS輸入誤差電壓為:

其中VOS_A1和VOS_A2分別是A1和A2的輸入偏移電壓,VOS_MISMATCH是由于電阻臂比值1%的變化引起的輸入誤差電壓:

即使我們忽略溫度變化,由于放大器A1和A2的偏移電壓以及電阻臂比值1%的失配引起的總誤差也可能高達1.67mVx250=417.5mV,是滿刻度輸出的16.7%。換句話說,417.5mV誤差電壓看上去像是417.5mV/25 = 16.7mV的輸入偏移誤差,這顯然是不可接受的。

總誤差可以通過使用更高精度的電阻(0.1%)、或具有更好偏移電壓規(guī)格的放大器來縮小。但這些措施將進一步增加本來就已經(jīng)包含了眾多元件的系統(tǒng)的成本。

另外,即使沒有負載,電阻分壓器R4/R3和R2/R1也提供了電源電流到地的流通路徑。這種到地的低共模阻抗在電池供電設(shè)備中很關(guān)鍵,因為電阻路徑中的漏電會迅速泄漏電池能量。



關(guān)鍵詞: 電流檢測 技術(shù)分析

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉