新聞中心

EEPW首頁 > 測試測量 > 設計應用 > 淺析實時頻譜測試技術原理及應用

淺析實時頻譜測試技術原理及應用

作者: 時間:2012-10-18 來源:網絡 收藏

前言

本文引用地址:http://butianyuan.cn/article/193053.htm

19世紀60年代,James Maxwell 通過計算推斷出存在著能夠通過真空傳輸能量的電磁波。此后工程師和科學家們一直在尋求創(chuàng)新方法利用無線電技術。接下來,隨著軍事和通信領域技術的深入發(fā)展,20世紀無線電技術一直在不斷創(chuàng)新,技術的演進也推動著RF向前發(fā)展(見圖1)。從軍用的跳頻電臺、雷達到RFID,第三代移動通信、藍牙、WLAN,各種微功率發(fā)射裝置等,瞬態(tài)信號如今無處不在。瞬態(tài)信號存在的普遍性使得技術人員需要有效的儀器對其進行捕獲、存儲并回放分析。另外,監(jiān)測間歇性干擾或頻譜使用情況等也需要一種有效的手段來實現“寬帶實時監(jiān)測”。

11.jpg

早在20世紀70、80年代,已經有部分儀表供應商采用FFT方式(基于快速傅立葉變換的分析方式)實現了實譜分析功能。但是由于受限于半導體工藝水平,ADC的采樣率無法實現高位數,因此當時的FFT頻譜分析儀的頻率范圍均在幾十兆赫茲或幾百兆赫茲,這就大大限制了這種儀表的應用范圍(一般主要應用在音頻、振動相關的測試領域)。

譜測試的

1.1 FFT的基本

FFT方法是通過傅里葉運算將被測信號分解成分立的頻率分量,達到與傳統頻譜分析儀同樣的效果。它采用數字方法直接由模擬/數字轉換器(ADC)對輸入信號取樣,再經FFT處理后獲得頻譜分布圖(見圖2)。

22.jpg

圖2 FFT方式進行頻譜分析的

離散傅立葉變換X(k)可看成是z變換在單位圓上的等距離采樣值,同樣,X(k)也可看作是序列傅氏變換X(ejω)的采樣,采樣間隔為ωN=2π/N。因此,離散傅立葉變換實質上是其頻譜的離散頻域采樣,對頻率具有選擇性(ωk=2πk/N),在這些點上反映了信號的頻譜。

根據采樣定律,一個頻帶有限的信號可以對它進行時域采樣而不丟失任何信息,FFT變換則說明對時間有限的信號(有限長序列)也可以進行頻域采樣,而不丟失任何信息。所以只要時間序列足夠長、采樣足夠密,頻域采樣就可較好地反映信號的頻譜趨勢,所以FFT可以用以進行信號的頻譜分析。

FFT原理的頻譜分析儀為獲得良好的線性度和高分辨率,對信號進行數據采集時 ADC的取樣率最少等于輸入信號最高頻率的兩倍,亦即頻率上限是100 MHz的實譜分析儀需要ADC有200 mS/S的取樣率。

FFT的性能用取樣點數和取樣率來表征,例如用100 kS/S的取樣率對輸入信號取樣1024點,則最高輸入頻率是50 kHz,分辨率是50Hz。如果取樣點數為2048點,則分辨率提高到25Hz。由此可知,最高輸入頻率取決于取樣率,分辨率取決于取樣點數。FFT運算時間與取樣點數成對數關系。FFT頻譜分析儀需要高頻率、高分辨率和高速運算時,要選用高速的FFT硬件,或者相應的數字信號處理器(DSP)芯片。

從原理上說,由于FFT分析方式中沒有超外差頻譜分析儀的掃描過程,是將下變頻的射頻信號一次性通過一定帶寬的中頻濾波器,這個頻帶內對信號的分析是完全并行、實時處理的。因此在這個意義上它可以看做是一種在一定帶寬下的“實時”頻譜分析儀。另外,FFT分析方式是數字化的處理方法,它可以在模/數變換后用軟件實現很多模擬掃頻儀無法實現的測試功能,如靈活的觸發(fā)方式、對存儲的頻譜信息進行詳細的回放分析等。

傅立葉變換可把輸入信號分解成分立的頻率分量,同樣它也可起著類似濾波器的作用,借助快速傅立葉變換電路代替低通濾波器,使頻譜分析儀的構成簡化、分辨率增高、一定跨度內測量時間縮短,這些都是現代FFT頻譜分析儀的優(yōu)點。

1.2 泰克公司實時頻譜分析儀原理

泰克公司在傳統FFT分析儀的基礎上增強了ADC的采樣位數和DSP的處理能力,開發(fā)出了第三代RF測試工具——實時頻譜分析儀(見圖3)。與傳統FFT分析儀相比,實時頻譜分析儀在諸如頻率范圍、射頻指標、捕獲帶寬、分析功能等方面都有了質的提高。其測試頻率范圍可達到14GHz,實時測試帶寬最大110 MHz,且具有全功能的通用及標準數字調制的測試能力。另外,它的射頻指標如動態(tài)范圍、靈敏度等也可以和高端的掃描頻譜儀相媲美。

實時頻譜分析儀原理

圖3 實時頻譜分析儀原理

1.2.1 樣點、幀和塊

實時頻譜分析儀進行的測量使用數字信號處理(DSP)技術實現。為了解如何在時域、頻域和調制域中分析射頻信號,首先需要考察儀器怎樣采集和存儲信號。在ADC數字化轉換信號之后,信號使用時域數據表示,然后可以使用DSP計算所有頻率和調制參數。

在RTSA使用實時采集無縫捕獲信號時,三個條件(樣點、幀和塊)描述了存儲的數據層級。圖4是樣點、幀、塊結構。

樣點、幀、塊結構

圖4 樣點、幀、塊結構

數據層級的最底層是樣點,它代表著離散的時域數據點。這種結構在其它數字取樣應用中也很常見,如實時示波器和基于PC的數字轉換器。決定相鄰樣點之間時間間隔的有效取樣速率取決于選擇的跨度。在實時頻譜分析儀中,每個樣點作為包含幅度和相位信息的I/Q對存儲在內存中。

上一層是幀,幀由整數個連續(xù)樣點組成,是可以應用快速傅立葉變換(FFT)把時域數據轉換到頻域中的基本單位。在這一過程中,每個幀產生一個頻域頻譜。

采集層級的最高層是塊,它由不同時間內無縫捕獲的許多相鄰幀組成。塊長度(也稱為采集長度)是一個連續(xù)采集表示的總時間。

在實時頻譜儀實時測量模式下,它無縫捕獲每個塊并存儲在內存中。然后它使用DSP技術進行后期處理,分析信號的頻率、時間和調制特點。

圖5是塊采集模式,可以實現實時無縫捕獲。對塊內部的所有幀,每個采集在時間上都是無縫的。在一個采集塊中的信號處理完成后,將開始采集下一個塊。塊存儲在內存中,可以應用任何實時測量。例如,實時頻譜模式下捕獲的信號可以在解調模式和時間模式下分析。

實時頻譜儀采集模式

圖5 實時頻譜儀采集模式



關鍵詞: 時頻 測試技術 原理

評論


相關推薦

技術專區(qū)

關閉