基于MC8051內(nèi)核的便攜幅頻特性測試儀設(shè)計
在現(xiàn)代電力電子系統(tǒng)中,隨著內(nèi)場測試和外場維護工作量的增加,對目前通用的測試儀器也提出了新的要求,研制低成本、體積小的便攜式幅頻特性測試儀具有深遠(yuǎn)的現(xiàn)實意義。目前,結(jié)合新型微處理器芯片進行幅頻特性測試儀的研制主要有三種技術(shù)途徑:(1)采用單片機作為主控芯片,通過軟件編程方式實現(xiàn)部分硬件功能,這種方案可以有效降低系統(tǒng)的復(fù)雜度,但在實時性上不盡人意。(2)應(yīng)用可編程邏輯器件(如FPGA)進行設(shè)計可以有效解決高速數(shù)據(jù)流的實時處理問題,但在人機界面的設(shè)計中具有較大困難。(3)采用單片機與FPGA芯片結(jié)合的方式,通過外部總線連接和數(shù)據(jù)傳輸協(xié)議的設(shè)計,使得系統(tǒng)兼具兩者的優(yōu)勢,從而成為設(shè)計人員首選的主流方案。
現(xiàn)代EDA(Electronic Design Automation)技術(shù)的發(fā)展和大規(guī)模FPGA器件的推出,使得在單片F(xiàn)PGA芯片中進行嵌入式8051 IP核設(shè)計成為可能。應(yīng)用現(xiàn)代EDA技術(shù),以FPGA器件為硬件平臺,使用VHDL語言編程,可以實現(xiàn)與MCS-51系列單片機指令系統(tǒng)完全兼容的微控制器芯片IP(Intellectual Property)核[1]。本文以此為基礎(chǔ),提出了幅頻特性測試儀設(shè)計的新途徑。系統(tǒng)以FPGA為核心采集處理模塊,以O(shè)regano公司開發(fā)的嵌入式MC8051內(nèi)核(以下簡稱51內(nèi)核)為顯示控制核心,通過FPGA內(nèi)部的正弦查找表IP核外加D/A模塊的思想產(chǎn)生系統(tǒng)需要的掃頻信號源,同時采用2.4英寸TFT彩屏液晶顯示器進行人機界面設(shè)計,實現(xiàn)了便攜式幅頻特性測試儀的基本功能。該儀器具有小型化、頻帶寬、操作簡單、測量精確度高、界面顯示友好等優(yōu)點,具有廣闊的應(yīng)用空間。
1 系統(tǒng)組成與工作原理
1.1 系統(tǒng)組成
系統(tǒng)主要由正弦激勵信號的產(chǎn)生模塊和信號采集、處理和實時顯示模塊組成。其中前者采用基于“IP核+高速D/A”的思想產(chǎn)生掃頻信號,后者主要包括FPGA核心板、雙路高速A/D以及人機交互界面。在系統(tǒng)時鐘和觸發(fā)信號的驅(qū)動下,同時采集待測網(wǎng)絡(luò)的輸出信號以及系統(tǒng)的激勵信號,并進行相應(yīng)的數(shù)據(jù)處理,實現(xiàn)對有源或無源四端網(wǎng)絡(luò)的幅頻特性測試。系統(tǒng)組成框圖如圖1所示。
系統(tǒng)設(shè)計中需要解決的核心問題:(1)51內(nèi)核的初始化配置問題。系統(tǒng)使用的51內(nèi)核,可以直接通過頂層文件的端口例化實現(xiàn)與FPGA內(nèi)部定義信號之間的連接,而51內(nèi)核使用的存儲器模塊則需要用戶進行配置。(2)數(shù)據(jù)流的速率匹配問題。經(jīng)A/D采集得到的數(shù)據(jù)率遠(yuǎn)遠(yuǎn)超出了51內(nèi)核的運算處理能力,因此系統(tǒng)中要進行數(shù)據(jù)緩存模塊的設(shè)計。(3)彩屏液晶的顯示控制。顯示部分是該儀器的關(guān)鍵模塊,系統(tǒng)采用TFT-LCD顯示技術(shù),可以進行友好的人機界面設(shè)計,但是彩屏液晶的初始化時序極其復(fù)雜,在動態(tài)曲線和測量數(shù)據(jù)的實時顯示方面要進行優(yōu)化設(shè)計。這些問題在實際設(shè)計中均得到了合理解決。
1.2 測量原理
對于一個線性時不變(LTI)系統(tǒng),其沖激響應(yīng)為h(t),在激勵為正弦信號e(t)=Acos(?棕0t+?茲)時,系統(tǒng)的零狀態(tài)響應(yīng)為:
由此可以看出,系統(tǒng)輸出的穩(wěn)態(tài)響應(yīng)也是一個正弦信號,其頻率和輸入信號的頻率相同,但幅度和相位發(fā)生了變化,其中幅度變?yōu)樵钚盘柗鹊膢H(j?棕0)|倍,|H(j?棕0)|稱為電路網(wǎng)絡(luò)幅頻特性。
系統(tǒng)工作時,將等幅的正弦掃頻信號作為輸入信號激勵被測網(wǎng)絡(luò)。掃頻信號的起始頻率、終止頻率、頻率步進值以及掃描時間均可以通過按鍵輸入的方式設(shè)置,也可以采用系統(tǒng)默認(rèn)的設(shè)置方式(掃頻范圍1 kHz~1 MHz,頻率步進1 kHz,掃描時間1 s)。高速A/D采集網(wǎng)絡(luò)的輸出信號和原始激勵信號,并在FPGA內(nèi)通過峰值檢波程序得到網(wǎng)絡(luò)輸出信號的包絡(luò)數(shù)據(jù),同時與激勵信號的幅值比較計算不同頻點的增益數(shù)據(jù)。采用異步FIFO作為FPGA與51內(nèi)核之間傳輸數(shù)據(jù)的緩沖器,并將其配置為“乒乓”工作模式。當(dāng)觸發(fā)信號到來時,將增益數(shù)據(jù)按照一定的格式和速率寫入異步FIFO。當(dāng)FIFO中存儲一定數(shù)量的數(shù)據(jù)以后,在51內(nèi)核同步時鐘的控制下將數(shù)據(jù)讀出并送往LCD模塊,同時禁止數(shù)據(jù)繼續(xù)寫入FIFO,實現(xiàn)幅頻特性曲線的顯示。
2 系統(tǒng)硬件設(shè)計
系統(tǒng)硬件主要實現(xiàn)正弦掃頻信號的產(chǎn)生、網(wǎng)絡(luò)輸出信號的采集處理、數(shù)據(jù)的傳輸以及TFT液晶模塊接口電路等功能,硬件總體框圖如圖2所示。
2.1 FPGA核心板模塊
FPGA核心板模塊是系統(tǒng)的核心,根據(jù)需要設(shè)計出FPGA最小系統(tǒng)板以及相關(guān)的A/D、D/A電路。其中,F(xiàn)PGA最小系統(tǒng)板采用Xilinx公司Spartan3系列的XC3S400-PQ208型40萬門芯片,核心板采用5 V輸入,由3片AMS1117實現(xiàn)5 V到3.3 V、5 V到2.5 V和5 V到1.2 V的電平轉(zhuǎn)換。板上采用40 MHz有源晶振,滿足高速設(shè)計要求。A/D為ADI公司高速模/數(shù)轉(zhuǎn)換芯片AD9224,具有12位精度,且功耗低。D/A采用高性能高速率的AD9764AR芯片,該芯片具有14位分辨率和極佳的動態(tài)無雜波失真范圍。
2.2 掃頻信號源設(shè)計
掃頻信號源的性能指標(biāo)直接影響儀器的測試精度,本文采用DDS技術(shù)產(chǎn)生掃頻信號。這里有兩條途徑可供選擇,一種是采用專用的DDS芯片,如AD9854等,利用FPGA發(fā)送頻率控制字產(chǎn)生掃頻信號;另一種是采用FPGA中集成的正弦查詢表IP核,這是一種利用“IP核+D/A”相結(jié)合來實現(xiàn)DDS技術(shù)的方法,在充分提高FPGA內(nèi)部資源利用率的前提下,又可以有效降低系統(tǒng)的硬件復(fù)雜度和成本,因此系統(tǒng)采用該方式。
設(shè)計環(huán)境使用Xilinx公司的ISE7.1,通過Core Generator生成正弦查詢表IP Core,查詢表中的波形數(shù)據(jù)存儲在FPGA的塊存儲器(Block Memory)中。查詢表IP核的輸入相位控制字THETA與實際相位之間的關(guān)系為:
該頻率精度完全達(dá)到設(shè)計要求。
評論