新聞中心

EEPW首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 基于光纖導(dǎo)光的數(shù)字全息微形變測(cè)量系統(tǒng)

基于光纖導(dǎo)光的數(shù)字全息微形變測(cè)量系統(tǒng)

作者: 時(shí)間:2011-05-31 來(lái)源:網(wǎng)絡(luò) 收藏

用CCD相機(jī)記錄干涉圖樣得到離散化的圖,進(jìn)而再現(xiàn)物光場(chǎng)表示為:
c.jpg
式中:Im為取虛部,Re為取實(shí)部。
雙曝光干涉測(cè)量原理:基于物體狀態(tài)變化前后再現(xiàn)物光場(chǎng)的相位差值得到物體形變或位移量。首先,物光場(chǎng)相位差表示為:
d.jpg
式中:φ1為原始物光場(chǎng)相位分布;φ2為變化后物光場(chǎng)相位分布。需要指出的是,由于計(jì)算機(jī)三角函數(shù)的計(jì)算特點(diǎn),△φ的范圍為[-π,+π],需要進(jìn)行解包裹處理。然后,基于上述的物光場(chǎng)相位差,得到物體的形變或位移量為:
e.jpg

2 實(shí)驗(yàn)裝置與結(jié)果分析
對(duì)于采用波導(dǎo)的光路結(jié)構(gòu),類型的選擇是關(guān)鍵。多模纖芯大,傳輸光能量較大,但由于其存在許多模式的光干涉,輻射斑點(diǎn)圖對(duì)外部條件十分敏感,相位漂移難于補(bǔ)償,導(dǎo)致條紋可見(jiàn)度降低和再現(xiàn)效率下降,因而不太適合做系統(tǒng)的導(dǎo)光介質(zhì)。單模光纖出射光強(qiáng)近似為高斯分布,當(dāng)光纖孔徑與端面到被計(jì)算的平面的距離相比很小時(shí),只用輻射的中心部分,目標(biāo)平面為均勻平面波,因而用單模光纖可以不用空間濾波器。
本文設(shè)計(jì)的全息光路如圖2所示,其基本結(jié)構(gòu)為Mach-Zender干涉光路。光源是功率為50 mW、波長(zhǎng)為532 nm的倍頻Nd:YAG固體激光器(Laser)。其輸出光束通過(guò)1個(gè)1×2基模光纖耦合器分為物體照明光和參考光。由于單模光纖芯徑為5/μm,為了避免激光耦合進(jìn)光纖的效率不高,選用加拿大OZoptics公司生產(chǎn)的插座式非接觸型激光光纖耦合器,耦合效率可達(dá)60%。進(jìn)而,為了確保在生產(chǎn)全息圖時(shí),物光與參考光的強(qiáng)度比約為1:1,即為了獲得高信噪比的全息圖,作為照明光的光纖出射光采用焦距為125 mm(L4)的準(zhǔn)直透鏡進(jìn)行擴(kuò)束,而作為參考光的光纖輸出光采用焦距為250 mm(L2)的準(zhǔn)直透鏡進(jìn)行擴(kuò)束。照明光照射物體,其反射光攜帶物體信息稱為物光(O),然后和參考光(R)經(jīng)非偏振棱鏡合光后,以一小角度在記錄面上相干疊加得到離軸全息圖。用于記錄全息圖的相機(jī)像素陣列為1 024×1 024,大小為6.7μm×6.7 μm的CMOS相機(jī)。實(shí)驗(yàn)中通過(guò)計(jì)算機(jī)控制相機(jī),實(shí)現(xiàn)全息圖的數(shù)字化記錄與存儲(chǔ)。實(shí)驗(yàn)中的測(cè)量物體為四周固定鋼板,如圖3所示。鋼板的尺寸為60 mm×60 mm、厚度為1 mm。通過(guò)高精度螺紋副擠壓鋼板施加壓力,使鋼板發(fā)生波長(zhǎng)量級(jí)的微小形變。鋼板面距離CMOS的距離,即全息記錄距離為27 cm。

本文引用地址:http://www.butianyuan.cn/article/194920.htm

f.jpg



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉