MCU控制的光伏電池測(cè)試儀設(shè)計(jì)
0 引言
由于光伏電池陣列是光伏發(fā)電系統(tǒng)的核心部件和能源供給部分,因此,準(zhǔn)確獲得光伏電池輸出特性曲線是一個(gè)基本要素,在此基礎(chǔ)之上,才可能深入、準(zhǔn)確地研究光伏系統(tǒng)的設(shè)計(jì)、控制與使用。
國(guó)內(nèi)在建立光伏電池數(shù)學(xué)模型,最大功率點(diǎn)跟蹤(MPPT)等方面已經(jīng)做了很多研究工作。文獻(xiàn)利用光伏電池生產(chǎn)廠商提供的4個(gè)電氣參數(shù)(Isc,Voc,IM和VM),提出了一個(gè)簡(jiǎn)化的數(shù)學(xué)模型,以模擬其在不同光照和溫度下的I-V特性曲線。文獻(xiàn)在太陽(yáng)電池?cái)?shù)學(xué)模型的基礎(chǔ)上,設(shè)計(jì)了模擬太陽(yáng)能I-V特性的生成電路。文獻(xiàn)利用太陽(yáng)能電池?cái)?shù)學(xué)模型,根據(jù)氣象資料估算太陽(yáng)電池的年發(fā)電量。上述文獻(xiàn)的研究,都是在認(rèn)同光伏電池特性曲線基本形態(tài)的前提下,基于Isc,Voc,等特殊點(diǎn),以數(shù)學(xué)模擬的方法獲得相應(yīng)的特性曲線。
1 光伏電池測(cè)試策略
1.1 光伏電池特性
光伏電池的輸出特性具有非線性。圖1所示為在不同的光照條件下,太陽(yáng)能電池陣列輸出的I-V特性和伏瓦特性曲線??梢娺@種非線性受到外部環(huán)境(如日照強(qiáng)度、溫度、負(fù)載等)以及本身技術(shù)指標(biāo)(如輸出阻抗)的影響,使得光伏電池的輸出功率發(fā)生變化,其實(shí)際轉(zhuǎn)換效率也受到限制。
值得注意的是,圖1所示的每一條曲線,都是在一個(gè)對(duì)應(yīng)恒定的日照情況下獲得的,因此,欲通過物理測(cè)試的方法,準(zhǔn)確獲得該條曲線,要么寄希望于有穩(wěn)定的日照,要么必須在盡可能短的時(shí)段內(nèi),完成全域測(cè)量,顯然后者更易于把握。測(cè)量精度取決于:全域測(cè)量時(shí)間的長(zhǎng)度,每一點(diǎn)上,二個(gè)坐標(biāo)數(shù)據(jù)采集的同時(shí)性。
1.2 數(shù)控電阻器控制策略
傳統(tǒng)的I-V法測(cè)定光伏電池的輸出特性,如果利用接觸式可變電阻器有許多的缺點(diǎn)。它只能做到有級(jí)調(diào)節(jié),要實(shí)現(xiàn)精確調(diào)節(jié)、電阻自動(dòng)數(shù)控調(diào)節(jié)卻很困難。斬波式可變電阻器采用脈寬調(diào)制(PWM)技術(shù),對(duì)固定電阻進(jìn)行斬波控制,能夠模擬精密數(shù)控電阻器。但是它僅適用于電源電壓穩(wěn)定情況下,太陽(yáng)能電池的輸出電壓隨輸出電流不同而發(fā)生非線性變化,不宜采用。
本文涉及的外部負(fù)載,利用工作在可變電阻區(qū)的功率MOSFET管,來模擬可控電阻,通過施加數(shù)控的電壓信號(hào),實(shí)現(xiàn)MOSFET管等效電阻的精密調(diào)節(jié)。根據(jù)功率MOSFET管(IRFP150)的輸出特性曲線,當(dāng)場(chǎng)效應(yīng)管工作于可變電阻區(qū)時(shí),電阻值Rdso=1/2KN(VGS-VT),其中KN為電導(dǎo)常數(shù),VT為開啟電壓??梢奟dso是由柵極電壓VGS控制的可變電阻。
2 硬件電路設(shè)計(jì)和實(shí)現(xiàn)
2.1 系統(tǒng)結(jié)構(gòu)
針對(duì)光伏電池的輸出特性和測(cè)量的特殊要求,為對(duì)光伏電池I-V和P-V特性實(shí)時(shí)、自動(dòng)檢測(cè),設(shè)計(jì)了基于STC-12C5A60S2單片機(jī)的光伏電池特性測(cè)試儀。測(cè)試儀原理框圖如圖2所示,MCU通過D/A轉(zhuǎn)換電路和電壓反饋,跟蹤調(diào)節(jié)柵極電壓VGS。通過A/D轉(zhuǎn)換電路和電流取樣,準(zhǔn)確檢測(cè)光伏電池兩端輸出的電流和電壓值。單片機(jī)通過串口與上位機(jī)通信,實(shí)現(xiàn)數(shù)據(jù)處理和顯示。
2.2 MOSFET管驅(qū)動(dòng)電路
場(chǎng)效應(yīng)管驅(qū)動(dòng)電路如圖3所示。采用型號(hào)為IRFP150的功率MOSFET管模擬可變電阻器,因其具有超低導(dǎo)通電阻,柵極電壓VGS=10V時(shí),RDS =0.030Ω。并聯(lián)FET起到擴(kuò)容的作用,在外加散熱片的情況下,可以通過15 A以上的電流。為了減少雜散電感和寄生振蕩,使并聯(lián)MOSFET管均流,采用統(tǒng)一驅(qū)動(dòng)源,并加獨(dú)立的柵極電阻。
2.3 MCU測(cè)控電路和電源補(bǔ)償
微控器采用高性能STC-12C5AS2單片機(jī)。鑒于測(cè)量精度的要求和擴(kuò)展方便,采用高速12位串行接口模/數(shù)轉(zhuǎn)換器MAX187和數(shù)/模轉(zhuǎn)換器TLV5616。當(dāng)基準(zhǔn)電壓為4.096 V時(shí),最小分辨率為1 mV。精密單電源運(yùn)算放大器OP777,控制MOSFET管柵極電壓。
為了穩(wěn)定控制柵極電壓,通過電流取樣信號(hào)反饋和控制電壓信號(hào)組成差分放大器,由此組成了一個(gè)閉環(huán)的柵極電壓跟蹤調(diào)節(jié)器,如圖4所示。
評(píng)論