一種基于圖像處理和投影的車牌定位方法
如式( 6)。
在這個過程中,閾值的選取是根據(jù)投影圖的圖像確定的。因為在投影圖中,代表的是每一列或一行的白色像素點的累加。所以當投影圖的值較大時,代表該列或者該行的白色像素點較多,從而為車牌區(qū)域;當投影圖的值較小時,為噪音點,所以必須確定一個閾值將噪音去除。本文之前采用的圖像處理方式已將大部分噪音點去除,所以在此先設(shè)定好閾值,大于該值的為車牌區(qū)域,同時由于車牌本身有長寬比例的特征,一般車牌的比例為22 :7,根據(jù)這一特點最終定位。
在車牌定位中,定位方法主要考慮的是對噪聲的抗干擾性是否良好,文中初步定位車牌區(qū)域是通過顏色模型的轉(zhuǎn)換,利用色度和飽和度的范圍大致確定車牌位置。去除了大量的背景噪音,對二次定位的準確性提供了可靠依據(jù)。在精確定位中,考慮到車本身存在噪音,例如散熱器、車燈等,但由于車牌位置紋理突出,車身噪音相對較小,所以利用移差掃描將車牌位置更加突出,非車牌區(qū)域只剩下單獨的孤立亮點。在精確定位中采用投影,所以就必須去除孤立亮點。文中采用Matlab工具箱,有效去除了大量的孤立亮點。采用水平投影和垂直投影確定水平和垂直方向的邊界,同時利用車牌本身長寬比例的特點最終定位,實驗證明,對車牌圖片噪音抗干擾性好,定位效果較好。
3. 結(jié)束語
本文利用基于顏色和投影的車牌定位方法,分兩步將車牌區(qū)域確定,通過對320 張分辨率為1 024 %768具有不同背景的汽車圖片進行測試,定位成功率達到8*% 以上。實驗數(shù)據(jù)如表1所示。
表1 實驗結(jié)果
實驗表明,該算法有效地實現(xiàn)了車牌圖像在受外界環(huán)境和復(fù)雜背景等多種因素影響的情況下,車牌準確定位的問題,具有實時性和準確性等優(yōu)點。同時由于二次定位是對處理的車牌圖片進行定位,定位時間明顯縮短,具有較好的應(yīng)用前景。
評論