新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 基于μC/OS-II嵌入式操作系統(tǒng)的TCSC實驗控制器前置

基于μC/OS-II嵌入式操作系統(tǒng)的TCSC實驗控制器前置

作者: 時間:2016-10-08 來源:網(wǎng)絡(luò) 收藏

在復(fù)雜的實時系統(tǒng)中,多任務(wù)處理是比較關(guān)鍵的環(huán)節(jié),采用前后臺的單任務(wù)控制方式已經(jīng)不能滿足要求,在高速數(shù)據(jù)采集系統(tǒng)中RS232明顯是個瓶頸。

本文引用地址:http://butianyuan.cn/article/201610/305931.htm

本文采用arm處理器技術(shù)、嵌入式實時操作系統(tǒng)技術(shù)和通用串行總線(USB)技術(shù)來完成TCSC實驗系統(tǒng)控制器前置單元的實際開發(fā)。 實驗表明,實際系統(tǒng)數(shù)據(jù)采集速度與設(shè)計時預(yù)期的結(jié)果基本一致,印證了在實時性較強,多任務(wù),需快速傳輸數(shù)據(jù)的復(fù)雜系統(tǒng)中,引入嵌入式操作系統(tǒng)μC/OS-II及USB傳輸方式的優(yōu)勢和必要性。

可控串聯(lián)補償( TCSC) 是柔性交流輸電系統(tǒng)( FACTS)概念提出后的第一個FACTS裝置。 由于TCSC直接串入輸電線路,可以連續(xù)、快速、大范圍地調(diào)節(jié)線路阻抗(本身的阻抗從容性到感性變化) ,和其自身的數(shù)據(jù)采集與監(jiān)控( SCADA)系統(tǒng)相配合,可以實現(xiàn)遠方阻抗和功率潮流調(diào)節(jié),平息地區(qū)性功率振蕩,提高系統(tǒng)暫態(tài)穩(wěn)定性,抑制次同步諧振。 本文通過一個在研項目——福建-華東電網(wǎng)互聯(lián)的可控串補研究,詳細介紹了可控串聯(lián)補償( TCSC)實驗控制器的前置單元部分設(shè)計,以便于為實際決策提供完整、準(zhǔn)確的實驗數(shù)據(jù)。

TCSC的穩(wěn)態(tài)特性分析電路模型

TCSC的基本結(jié)構(gòu)是固定的串補電容C并聯(lián)一個由雙向晶閘管(實際也可把兩個單向晶閘管并聯(lián)反接在一起)控制的電抗L ,圖1所示為穩(wěn)態(tài)分析用的TCSC模型:

它的運行模式有:

1) 晶閘管截止。 TCSC等同于固定串聯(lián)補償。

2) 晶閘管旁路。 在電流正或反方向流過VT時,雙向晶閘管VT分別在180°范圍內(nèi)全導(dǎo)通,線路電流大部分通過L ,整個TCSC呈現(xiàn)小電抗特性。

3) 容性微調(diào)模式。 VT導(dǎo)通角較小,整個TCSC的阻抗呈現(xiàn)大于C本身的容抗特性。

4) 感性微調(diào)模式。 VT的導(dǎo)通角較大,整個TCSC的阻抗呈現(xiàn)感性電抗特性。

通過其運行模式可以看出,控制雙向晶閘管VT的導(dǎo)通角可以改變LC環(huán)路導(dǎo)通電流,從而可以連續(xù)快速調(diào)整TCSC阻抗值而達到其控制目的。

實驗控制系統(tǒng)由上位主機和前置控制單元組成,上位機主要負責(zé)系統(tǒng)分析,控制算法的確定。 前置單元實現(xiàn)高速數(shù)據(jù)采集,AD轉(zhuǎn)換,與上位機快速傳遞數(shù)據(jù)及觸發(fā)可控硅等多項功能。

前置單元的需求分析

前置單元的在整個TCSC實驗控制系統(tǒng)中主要完成以下3項工作。

和上位機的通訊

前置單元通過USB接口和上位機通訊。 這個功能是其它兩個功能的基礎(chǔ),要實現(xiàn)這一功能,需要設(shè)計設(shè)備端(前置單元)和主機端(上位機)的USB 軟件,并定義上位機和前置單元間通訊的數(shù)據(jù)格式。

數(shù)據(jù)采集

前置單元要采集從電流(電壓)傳感器輸入的三相電流和三相電壓,共六路數(shù)據(jù)。當(dāng)上位機需要三相電流電壓數(shù)據(jù)時,就發(fā)送命令給前置單元要求其開始采集數(shù)據(jù),并設(shè)定所需采樣的周期數(shù)。前置單元收到命令后立即開始數(shù)據(jù)采集,并通過USB把采集的數(shù)據(jù)按約定的格式送給主機。要實現(xiàn)六路采樣功能,前置單元必須具備采樣保持器、多路選擇器和AD轉(zhuǎn)換器。

數(shù)據(jù)采集的速度分析:因為上位機需要對電壓電流信號進行高次諧波分析,所以數(shù)據(jù)采集的速度必須盡量快。S3C44B0X自帶的AD最高采樣頻率為100 kSPS(10μs一次) ,加上其多路選擇器的切換時間為15μs,實際的最快采樣速度為25 μs一次。這里選擇每0.2 ms對三相電壓和三相電流各采樣一次,即每33μs采樣一個數(shù)據(jù)。這樣每個周波可以采樣100 次,可以分析到5~7次諧波。

三相晶閘管的觸發(fā)控制

上位機計算出合適的晶閘管導(dǎo)通角并通過USB傳給前置單元,前置單元使用此導(dǎo)通角發(fā)出晶閘管觸發(fā)信號。要實現(xiàn)此功能,前置單元必須具有3路電壓過零監(jiān)測器和晶閘管觸發(fā)電路,如圖2所示。

硬件設(shè)計

前置單元硬件電路的核心部分采用51EDA和勤研公司聯(lián)合研制的44B0X開發(fā)板。 該開發(fā)板使用SAMSUMG S3C44B0X處理器,并集成了其它外部設(shè)備,主要包括2 MB16 位數(shù)據(jù)寬度的線性Flash( SST39VF160) , 10M TCP / IP 接口(RTL8019 ) , USBDevice接口( Philip s PD IUSBD12) ,LCD接口, 7路ADC輸入,兩路標(biāo)準(zhǔn)RS232接口等等。此外,根據(jù)課題需要在設(shè)計中還自行擴展了過零檢測電路,采樣保持電路和可控硅觸發(fā)電路。

微處理器SAMSUNG S3C44B0X介紹

這是一款基于ARM7TDM I內(nèi)核的32位的高性能R ISC處理器。 支持16位Thumb和32位ARM雙指令集,尤其是在使用16位Thumb指令集時仍然享受arm處理器的32位的特性,如32位長的寄存器, 32位的尋址空間等,并且得到更高密度代碼。 此外還集成很多外設(shè),包括8通道ADC,外部存儲器控制器, LCD控制器, 4通道DMA, 71個通用IO口,具有日歷功能的RTC時鐘, 5個PWM定時器,一個內(nèi)部定時器和一個看門狗定時器,片內(nèi)鎖相環(huán)( PLL)時鐘發(fā)生器(最高時鐘頻率66 MHz) , 2 通道異步串口,帶有16 字節(jié)F IFO, IIC、IIS總線控制器等等。

USB接口器件PD IUSBD12介紹

這是Philip s公司推出的一款應(yīng)用廣泛的USB 接口器件,符合USB1.1規(guī)范,集成SIE, F IFO存儲器,收發(fā)器以及電壓調(diào)整器,可與任何外部微控制器或微處理器實現(xiàn)高速并行接口(2 MB / s) ,完全DMA操作,主端點的雙緩沖配置增加了數(shù)據(jù)吞吐量并輕松實現(xiàn)實時數(shù)據(jù)傳輸。

電壓過零檢測電路

電壓過零檢測電路由一個電橋,光電隔離及其它器件組成,共3組,兩個74HC14反向門用來將電壓整形為TTL電平,輸入到微處理器S3C44B0X外部中斷端,當(dāng)電力線電壓變?yōu)榱銜r,光電隔離器中發(fā)光二極管截止,此時向中斷端輸出高電平脈沖引發(fā)中斷。

采樣保持電路

采樣保持器共6 路,其中3 路測電壓, 3 路測電流。采用LF398芯片,它有8個引腳, 1和4腳接電源,范圍為( ±5 ~ ±18) V之間, 3腳為輸入端,接電力線經(jīng)變壓后的電壓或經(jīng)電流互感器轉(zhuǎn)化的電壓, 2腳接1 kΩ電阻,用于調(diào)節(jié)漂移電壓。7腳接參考電壓, 8 腳接控制信號,控制芯片的采樣保持狀態(tài)。在這里通過S3C44B0X的通用I/O 引腳GPF0-5 分別控制6 路采樣保持器的8腳。6腳外接保持電容,這里考慮到實時性的要求,因此選擇較小的電容值,取C1 = 0.001μF,此時采樣時間不超過10μs,同時可以滿足8位的采樣精度。


上一頁 1 2 下一頁

關(guān)鍵詞:

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉