新聞中心

EEPW首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > 利用雙焊盤檢測電阻優(yōu)化高電流檢測精度

利用雙焊盤檢測電阻優(yōu)化高電流檢測精度

作者: 時(shí)間:2016-10-18 來源:網(wǎng)絡(luò) 收藏

簡介

本文引用地址:http://butianyuan.cn/article/201610/308887.htm

電流檢測電阻有多種形狀和尺寸可供選擇,用于測量諸多汽車、功率控制和工業(yè)系統(tǒng)中的電流。使用極低值電阻(幾mΩ或以下)時(shí),焊料的電阻將在檢測元件電阻中占據(jù)很大比例,結(jié)果大幅增加測量誤差。高精度應(yīng)用通常使用4引腳電阻和開爾文檢測技術(shù)以減少這種誤差,但是這些專用電阻卻可能十分昂貴。另外,在測量大電流時(shí),電阻焊盤的尺寸和設(shè)計(jì)在確定檢測精度方面起著關(guān)鍵作用。本文將描述一種替代方案,該方案采用一種標(biāo)準(zhǔn)的低成本雙焊盤檢測電阻(4焊盤布局)以實(shí)現(xiàn)高精度開爾文檢測。圖1所示為用于確定五種不同布局所致誤差的測試板。

1.jpg

圖1. 檢測電阻布局測試PCB板。

電流檢測電阻

采用2512封裝的常用電流檢測電阻的電阻值最低可達(dá)0.5 mΩ,其最大功耗可能達(dá)3 W。為了展現(xiàn)最差條件下的誤差,這些試驗(yàn)采用一個(gè)0.5 mΩ、3 W電阻,其容差為1%(型號:ULRG3-2512-0M50-FLFSLT制造商:Welwyn/TTelectronics)其尺寸和標(biāo)準(zhǔn)4線封裝如圖2所示。

2.jpg

圖2. (a) ULRG3-2512-0M50-FLFSLT電阻的外形尺寸;(b) 標(biāo)準(zhǔn)4焊盤封裝。

傳統(tǒng)封裝

對于開爾文檢測,必須將標(biāo)準(zhǔn)雙線封裝焊盤進(jìn)行拆分,以便為系統(tǒng)電流和檢測電流提供獨(dú)立的路徑。圖3顯示了此類布局的一個(gè)例子。系統(tǒng)電流用紅色箭頭表示的路徑。如果使用一種簡單的雙焊盤布局,則總電阻為:

為了避免增加電阻,需要把電壓檢測走線正確的布局到檢測電阻焊盤處。系統(tǒng)電流將在上部焊點(diǎn)導(dǎo)致顯著的壓降,但檢測電流則會在下部焊點(diǎn)導(dǎo)致可以忽略不計(jì)的壓降??梢?,這種焊盤分離方案可以消除測量中的焊點(diǎn)電阻,從而提高系統(tǒng)的總體精度。

3.jpg

圖3. 開爾文檢測。

優(yōu)化開爾文封裝

圖3所示布局是對標(biāo)準(zhǔn)雙焊盤方案的一種顯著的改進(jìn),但是,在使用極低值電阻(0.5 mΩ或以下)時(shí),焊盤上檢測點(diǎn)的物理位置以及流經(jīng)電阻的電流對稱性的影響將變得更加顯著。例如,ULRG3-2512-0M50-FLFSL是一款固態(tài)金屬合金電阻,因此,電阻沿著焊盤每延伸一毫米,結(jié)果都會影響有效電阻。使用校準(zhǔn)電流,通過比較五種定制封裝下的壓降,可以確定最佳檢測布局。

測試PCB板

圖4展示在測試PCB板上構(gòu)建的五種布局模式,分別標(biāo)記為A到E。我們盡可能把走線布局到沿著檢測焊盤延伸的不同位置的測試點(diǎn),表示為圖中的彩點(diǎn)。各個(gè)電阻封裝為:

f1.jpg

1.基于2512建議封裝的標(biāo)準(zhǔn)4線電阻(見圖2(b))。檢測點(diǎn)對 (X and Y)位于焊盤外緣和內(nèi)緣(x軸)。

2.類似于A,但焊盤向內(nèi)延伸較長,以便更好地覆蓋焊盤區(qū)(見圖2(a))。檢測點(diǎn)位于焊盤中心和末端。

3.利用焊盤兩側(cè)以提供更對稱的系統(tǒng)電流通路。同時(shí)把檢測點(diǎn)移動到更中心的位置。檢測點(diǎn)位于焊盤中心和末端。

4.與C類似,只是系統(tǒng)電流焊盤在最靠里的點(diǎn)接合。只使用了外部檢測點(diǎn)。

5.A和B的混合體。系統(tǒng)電流流過較寬的焊盤,檢測電流流過較小的焊盤。檢測點(diǎn)位于焊盤的外緣和內(nèi)緣。

4.jpg

圖4. 測試PCB板的布局。

在模板上涂抹焊料,并在回流爐中使用回流焊接。使用的是ULRG3-2512-0M50-FLFSLT電阻。

測試步驟

測試設(shè)計(jì)如圖5所示。使20 A的校準(zhǔn)電流通過各個(gè)電阻,同時(shí)使電阻保持在25℃。在加載電流后1秒內(nèi),測量產(chǎn)生的差分電壓,以防止電阻溫度升高1℃以上。同時(shí)監(jiān)控各個(gè)電阻的溫度,以確保測試結(jié)果均在25℃下測得。電流為20 A時(shí),通過0.5 mΩ電阻的理想壓降為10 mV。

[attach]87555[/attach]

圖5. 測試設(shè)置。

測試結(jié)果

表1列出了采用圖4所示檢測焊盤位置測得的數(shù)據(jù)。

表1. 測得電壓和誤差

Footprint

Sense Pad

Measured (mV)

Error (%)

A

Y

9.55

4.5

X

9.68

3.2

B

Y

9.50

5

X

9.55

4.5

C

Y

9.80

2

X

9.90

1

D

X

10.06

0.6

E

Y

9.59

4.1

X

9.60

4

Top pad*

12.28

22.8

*無開爾文檢測。對通過高電流主焊盤的電壓進(jìn)行測量,以展示與焊料電阻相關(guān)的誤差。

觀察結(jié)果

1.由于結(jié)果的可比較性以及各電阻偏差都在容限范圍之內(nèi),所以得出封裝C和D的誤差最少,。封裝C為首選封裝,因?yàn)樗淮罂赡軐?dǎo)致與元件放置容限相關(guān)的問題。

2.在每一種情況下,電阻外端的檢測點(diǎn)提供的結(jié)果最準(zhǔn)確。這表明,這些電阻是制造商根據(jù)電阻的總長度設(shè)計(jì)的。

3.請注意,在未使用開爾文檢測時(shí),焊料電阻相關(guān)誤差是22%。這相當(dāng)于約0.144 mΩ的焊料電阻。

4.封裝E展示了不對稱焊盤布局的效應(yīng)?;亓髌陂g,元件通過大量焊料才能焊盤。應(yīng)避免這種封裝。

結(jié)論

根據(jù)前面所示結(jié)果,最佳封裝是C,其預(yù)期測量誤差小于1%。該封裝的建議尺寸如圖6所示。

6.jpg

圖6. 最佳封裝尺寸。

檢測走線的布局也會影響測量精度。為了實(shí)現(xiàn)最高精度,應(yīng)在電阻邊緣測量檢測電壓。圖7所示建議布局采用通孔,把焊盤外邊緣布局到另一層,從而避免切割主電源層。

7.jpg

圖7. 建議PCB走線路由。

本文中的數(shù)據(jù)可能并不適用于所有電阻,而且結(jié)果可能因情況而異,具體取決于電阻的材質(zhì)和尺寸。應(yīng)該咨詢電阻制造商。用戶有責(zé)任確保封裝的布局尺寸和結(jié)構(gòu)均符合各項(xiàng)SMT制造要求。對于因使用本封裝而可能導(dǎo)致的任何問題,ADI概不負(fù)責(zé)。



關(guān)鍵詞: 焊盤 電流檢測

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉