新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 高頻功率切換損耗低 高速IGBT增強(qiáng)PV變頻器效能

高頻功率切換損耗低 高速IGBT增強(qiáng)PV變頻器效能

作者: 時(shí)間:2016-12-05 來(lái)源:網(wǎng)絡(luò) 收藏
對(duì)需要輸出過(guò)濾器或升壓/降壓抑制的應(yīng)用來(lái)說(shuō),較高的切換頻率可為整個(gè)系統(tǒng)帶來(lái)好處,像太陽(yáng)能變頻器就是同時(shí)兼具兩者的應(yīng)用。太陽(yáng)能變頻器具有最好的效率及功率密度,同時(shí)也承受著高成本壓力。高速絕緣閘雙極晶體管(High Speed IGBT)已針對(duì)高頻率硬切換應(yīng)用優(yōu)化,因此,該零件為太陽(yáng)能應(yīng)用中功率模塊的理想選擇。

本文將說(shuō)明650伏特(V)IGBT3、650V IGBT4及650V高速IGBT--HS3 IGBT三者應(yīng)用在功率模塊上的差異。結(jié)果顯示,依據(jù)裝置設(shè)計(jì),650V HS3 IGBT將能提供最理想的效能,用做高效率的切換開關(guān)。

本文引用地址:http://butianyuan.cn/article/201612/326397.htm

對(duì)阻斷電壓介于600~1,200V的現(xiàn)代IGBT而言,溝槽場(chǎng)截止(Trench-Field-Stop)技術(shù)是最常見的概念。這項(xiàng)技術(shù)一方面可讓裝置執(zhí)行低導(dǎo)通電壓及軟切換,另一方面可降低切換損耗并提供高頻率應(yīng)用,類似金屬氧化物半導(dǎo)體場(chǎng)效晶體管(MOSFET)的切換效能。

溝槽場(chǎng)截止降低IGBT靜態(tài)損耗

搭載這項(xiàng)技術(shù)的組件效能主要由晶格尺寸、芯片厚度及摻雜分布等設(shè)計(jì)參數(shù)控制。設(shè)計(jì)人員透過(guò)調(diào)整這些參數(shù),便能讓組件在漂移區(qū)的高載子密度增加。此類組件提供低VCE(sat),降低靜態(tài)損耗;于關(guān)斷期間,高載子密度會(huì)減慢組件清除速度,增加動(dòng)態(tài)損耗。因此,IGBT除了可用于太陽(yáng)能變頻器或升壓器之類需要低動(dòng)態(tài)損耗組件的高頻率應(yīng)用,也適用在需要低靜態(tài)損耗的低頻率應(yīng)用。

具低關(guān)閉損耗 HS3 IGBT適合高頻應(yīng)用

測(cè)量時(shí)使用50安培(A)額定集極電流的650V IGBT3、650V IGBT4及650V HS3 IGBT,透過(guò)測(cè)量切換損耗來(lái)決定芯片的電子效能。測(cè)量時(shí),將每個(gè)芯片整合在具有相同電路及17奈亨(nH)雜散電感的EasyPACK 2B功率模塊。由于導(dǎo)通損耗EON主要受使用的飛輪二極管影響,所有芯片在運(yùn)作時(shí)皆使用額定電流IF=30A的650V射極控制二極管。

除非另行指定,所有測(cè)量均在實(shí)驗(yàn)室中依下列條件進(jìn)行:采用整合式電流探針且雜散電感為L(zhǎng)σ=25nH;直流鏈接電壓設(shè)為VDC=400V,符合一般應(yīng)用電壓,芯片以IC=50A的額定集極電流運(yùn)作;IGBT驅(qū)動(dòng)使用閘射極電壓VGE=±15V。所有測(cè)量均在Tvj=25℃下執(zhí)行。

芯片的切換運(yùn)作皆在上述設(shè)定下測(cè)量,從開通及關(guān)斷波形中擷取出對(duì)應(yīng)的能源和特性切換參數(shù)。

圖1顯示HS3 IGBT、IGBT3及IGBT4在相同切換參數(shù)下的切換損耗。于開通及關(guān)斷時(shí)分別達(dá)到di/dt=1.5千安培(kA)/微秒(μs)和dv/dt=4.5千伏特(kV)/μs的條件設(shè)定RG。HS3 IGBT具有最低的切換損耗EON及EOFF,且加總的Etotal不及IGBT3的一半。圖1中插圖顯示HS3 IGBT的EON和di/dt與RG的關(guān)系,RG升高時(shí),EON升高,而di/dt降低;尤其在RG<20奧姆(Ω)時(shí),可達(dá)到di/dt>1kA/μs,而較高的RG將使di/dt低于0.5kA/μs。

圖1 針對(duì)HS3 IGBT、IGBT3和IGBT4,開通時(shí)在相同的di/dt下,關(guān)斷時(shí)在相同的dv/dt下,EON、EOFF和Etotal的切換能量比較。上方插圖為HS3 IGBT的EON和di/dt與RG的關(guān)聯(lián)。

HS3具有低關(guān)閉損耗,表示其切換效能優(yōu)異。因此,HS3 IGBT最適合高頻率應(yīng)用,其藉由權(quán)衡EOFF和VCE(sat),可提供低動(dòng)態(tài)損耗。由于HS3 IGBT使用高閘極電阻,使其具有高導(dǎo)通損耗,同時(shí)帶來(lái)極低的di/dt。為補(bǔ)償此特性,必須大幅降低導(dǎo)通閘極電阻,其中一種可行的實(shí)作方式是使用較為精密的閘極驅(qū)動(dòng)設(shè)計(jì),讓HS3 IGBT可用做非常高效率的切換開關(guān)。

RG設(shè)定影響HS3 IGBT切換效能

前文顯示HS3 IGBT在高頻率應(yīng)用上大幅超越IGBT3及IGBT4,接下來(lái)要測(cè)量的是HS3 IGBT在操作條件下的效能。在一般的太陽(yáng)能變頻器操作條件下,HS3 IGBT大部分將以低于額定芯片電流的集極電流運(yùn)作;此外,直流鏈接電壓可能會(huì)隨廣泛的電壓范圍變化。因此,以下將分析HS3 IGBT在150~450V的直流鏈接電壓范圍,以及集極電流達(dá)到額定芯片電流下的切換損耗。

測(cè)量時(shí),閘極驅(qū)動(dòng)電路使用RG=15Ω。圖2顯示HS3 IGBT切換損耗與直流鏈接電壓的關(guān)聯(lián),當(dāng)VDC較低時(shí)EOFF也較低,且會(huì)隨著VDC提高呈線性增加,而較高的集極電流則會(huì)提高關(guān)斷損耗;相較之下,可發(fā)現(xiàn)EON的提高與VDC和IC不成比例,在IC=10A時(shí),EON相對(duì)于VDC的斜率幾乎為恒定;在IC=30和50A時(shí),可發(fā)現(xiàn)VDC≧300V時(shí)的斜率變大。在插圖中,非等比例的提高也同樣發(fā)生在Etotal。

圖2 HS3 IGBT切換能量EON和EOFF與直流鏈接電壓在IC = 10、30和50A的關(guān)系。上方插圖為HS3 IGBT的Etotal與直流鏈接電壓IC = 10、30和50A的關(guān)系。

這些測(cè)量顯示,相較于導(dǎo)通損耗,HS3 IGBT的關(guān)斷損耗對(duì)裝置效能的影響極為輕微,當(dāng)VDC≧300V,IC≧30A時(shí),導(dǎo)通損耗非等比例的提高,可在低集極電流下得到最高效率;較大的VDC和IC會(huì)提高導(dǎo)通損耗,與di/dt降低有所關(guān)聯(lián)。此效應(yīng)為HS3 IGBT的特性,且和裝置設(shè)計(jì)有關(guān)。要補(bǔ)償此效應(yīng)的方法之一,就是降低RG,進(jìn)而降低軟化度(Softness)。

使用高切換速度的裝置時(shí),伴隨應(yīng)用而來(lái)的需求之一,就是必須降低設(shè)定中的雜散電感。因此,模塊及設(shè)定兩者都必須提供低電感,以避免寄生效應(yīng)。與雜散電感緊密相關(guān)的兩個(gè)常見效應(yīng)包括集射極的過(guò)電壓峰值VPeak,以及關(guān)斷和開通期間集射極電壓下降導(dǎo)致的切換損耗降低。圖3顯示在相同的切換參數(shù),VDC=400V,di/dt=1.5kA/μs和dv/dt=7.2kV/μs,及VDC=300V,di/dt=1.6kA/μs和dv/dt=6.0kV/μs下,HS3 IGBT的切換損耗和過(guò)電壓峰值相對(duì)于設(shè)定的雜散電感。提高Lσ時(shí),關(guān)斷能量會(huì)稍微提高,而開通能量則會(huì)大幅降低,因此,提高Lσ將會(huì)降低總切換能量,這個(gè)一般性趨勢(shì)與直流鏈接電壓無(wú)關(guān);另一方面,較高的Lσ將使VPeak提高,因此使用的直流鏈接電壓將受到限制。對(duì)策之一就是提高RG以降低切換速度,但這樣卻會(huì)提高切換損耗。

圖3 HS3 IGBT切換能量EON和EOFF及VPeak與VDC = 300和400V雜散電感的關(guān)系。上方插圖為HS3 IGBT的Etotal與雜散電感VDC = 300和400V的關(guān)系。

提高設(shè)定的雜散電感可降低IGBT的Etotal,因?yàn)榻档虴ON的影響遠(yuǎn)高于提高EOFF。由設(shè)定或二極管急變的諧振頻率所導(dǎo)致的振蕩等寄生效應(yīng),將產(chǎn)生電磁干擾,這也必須在應(yīng)用中加以考慮。

HS3 IGBT具備低損耗/高輸出電流

為分析不同切換頻率的裝置效能,使用IPOSIM仿真變頻器效能。為了能夠進(jìn)行比較,圖1所示的HS3 IGBT和IGBT3的動(dòng)態(tài)損耗也考慮在內(nèi)。在模擬中,計(jì)算出輸出功率4千伏安(kVA)的單相H型電橋的輸出電流,并考慮以下的操作條件:輸出電流IOUT設(shè)為17.4ARMS,功率因子使用1.0;此外,調(diào)變指數(shù)為0.8,直流鏈接電壓為400V。這兩款裝置使用相同的熱狀況,將散熱片溫度固定在80℃。

圖4顯示H橋變頻器在上述操作條件下模擬的半導(dǎo)體功率損耗PLosses。從H橋變頻器的分析顯示,IGBT3的靜態(tài)損耗只有HS3 IGBT靜態(tài)損耗的70%;提高切換頻率f時(shí),動(dòng)態(tài)損耗變得很明顯,在f=7.5kHz時(shí),HS3 IGBT的整體損耗等于IGBT3的整體損耗,如圖4星號(hào)部分顯示;當(dāng)進(jìn)一步提高切換頻率時(shí),此效應(yīng)更為顯著,而且可清楚發(fā)現(xiàn)HS3 IGBT的優(yōu)點(diǎn)在高切換頻率下更為明顯。

圖4 左側(cè):HS3 IGBT和IGBT3在H橋變頻器拓?fù)?/strong>的模擬半導(dǎo)體功率損耗與切換頻率的關(guān)系。模擬的功率損耗為H橋變頻器的功率損耗,而非單一芯片;右側(cè):HS3 IGBT和IGBT3最高可達(dá)到的輸出電流與切換頻率的關(guān)系。

圖4右側(cè)顯示最高可達(dá)到的輸出電流,計(jì)算時(shí)使用了上述的操作條件,其中IOUT不是固定值,會(huì)受裝置最高接面溫度限制;當(dāng)提高頻率時(shí),IOUT隨之下降,在低切換頻率時(shí),IGBT3的最高輸出電流高于HS3 IGBT;在f?7.5kHz時(shí),HS3 IGBT的輸出電流高于IGBT3的輸出電流。HS3 IGBT和IGBT3兩者IOUT的差異,在較高的切換頻率下更為顯著。

閘極驅(qū)動(dòng)設(shè)計(jì)發(fā)揮HS3 IGBT效能

本文提出HS3 IGBT、IGBT3和IGBT4的比較,當(dāng)中顯示HS3 IGBT的切換損耗少了兩倍,在高頻率應(yīng)用的效能上大幅超越IGBT3及IGBT4。為了能善加發(fā)揮HS3 IGBT的切換效能,需要有針對(duì)應(yīng)用優(yōu)化的操作模式。因此,必須仔細(xì)考慮操作電流和閘極電阻,針對(duì)后者,其中一種可能的方式就是使用更為精細(xì)的閘極驅(qū)動(dòng)設(shè)計(jì)。

HS3 IGBT是經(jīng)濟(jì)實(shí)惠的高效率切換開關(guān),適合用在太陽(yáng)能變頻器或不斷電系統(tǒng)(UPS)之類的高頻率硬切換應(yīng)用。仿真的結(jié)果也支持這些發(fā)現(xiàn),同時(shí)顯示HS3 IGBT適合在操作切換頻率超過(guò)7.5kHz的應(yīng)用中,當(dāng)做最新型的切換開關(guān)使用。



關(guān)鍵詞: 高頻功率IGB

評(píng)論


技術(shù)專區(qū)

關(guān)閉