新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 一款低壓大電流開關(guān)電源的電路設(shè)計

一款低壓大電流開關(guān)電源的電路設(shè)計

作者: 時間:2016-12-05 來源:網(wǎng)絡(luò) 收藏
為了以更低的功耗獲得更高的速度和更佳的性能,要求電源電壓越來越低,瞬態(tài)性能指標(biāo)越來越高,因此對開關(guān)電源提出了越來越高的要求。用原有的電路拓?fù)?/strong>及整流方式已不能滿足現(xiàn)在的要求,為了適應(yīng)IC芯片發(fā)展的需要,人們開始研究新的電路拓?fù)洹R驗檩敵鲭妷汉艿?,所以,同步整流自然成為這種低壓大電流電源的必然選擇,考濾到產(chǎn)品的復(fù)雜程度及產(chǎn)品可靠性,同步整流一般選擇自驅(qū)動同步整流,能與自驅(qū)動同步整流電路較好結(jié)合的拓?fù)浯笾掠腥N:有源箝位正激變換器;互補(bǔ)控制半橋變換器;兩級結(jié)構(gòu)變換器。與兩級結(jié)構(gòu)變換器相比,有源箝位變換器和互補(bǔ)控制半橋變換器所用器件少,更具有吸引力。這兩種變換器拓?fù)淙菀讓崿F(xiàn)軟開關(guān),工作頻率可以更高;變壓器的磁芯可以雙向磁化,磁芯的利用率高。針對一次整流電源輸出的-48V(36~72V)電壓,輸入電壓在較大(36~72V)的范圍內(nèi)變化時,互補(bǔ)控制的半橋電路副邊所得到的驅(qū)動電壓變化范圍太大,已不能適用來驅(qū)動MOSFET管。因此,有源箝位自驅(qū)動同步整流正激變換器是低壓大電流開關(guān)電源必然選擇的電路拓?fù)洹?/span>

有源箝位同步整流正激變換器的拓?fù)浞治?/strong>

本文引用地址:http://butianyuan.cn/article/201612/326475.htm

圖1 有源箝位同步整流正激式電路圖

圖2 有源箝位同步整流正激變換器的主要參量波形

有源箝位同步整流正激變換器的電路拓?fù)淙鐖D1所示,DC-DC有源箝位ZVS-PWM正激變換器在穩(wěn)態(tài)運行時,一個開關(guān)周期內(nèi)的主要參量波形如圖2。一個開關(guān)周期內(nèi)大致可分為四個運行模式,即:

模式1(t0

在主開關(guān)S1開通前,箝位電容上的電壓為Vc1=DVin/(1-D)(極性為下正上負(fù))。這一階段,箝位開關(guān)S2關(guān)斷,箝位電容電流ic1=0。 S1導(dǎo)通后,S1開關(guān)管的漏極電位VD=0,變壓器磁芯正向激磁,激磁電流im由第三象限的-Im向第一象限+Im過渡,iL1=im+Io/N,N為變壓器原副邊繞組匝數(shù)比N1/N2。變壓器原邊繞組電壓VP=VS,能量由輸入電源Vin經(jīng)過變壓器傳送到負(fù)載。

模式2(t1

S1斷開,S2仍關(guān)斷。磁場能量對S1輸出電容Cs充電。ip由Io/N降到零,iL1=im+ip,im≈Im;ic10。VD由0上升到 Vin+Vc1, Cs電壓達(dá)到Vin+Vc1,S1上的電壓被箝位在這一水平;變壓器原邊繞組電壓VP從Vin變化到Vin–VD=-Vc1。Vc1=DVin/(1- D)保持不變。模式3(t2

主開關(guān)S1關(guān)斷,S2開通前,由于VD為正,箝位開關(guān)S2隨之可以ZVS開通,箝位電路運行。箝位電容電壓Vc1=DVin/(1-D),由于變壓器磁場能量對箝位電容儲能的交換過程,使該電壓有變化,Vc1=Vc1+ΔV,ΔV表示充放電過程中箝位電容電壓紋波,主開關(guān)電壓箝定在Vc1+Vin水平。箝位電容電流-ic1=im=iL1;ip=0,im由第一象限的+Im向第三象限-Im過渡,也即磁通復(fù)位過程。

模式4(t3

S1,S2關(guān)斷,磁場能量使S1結(jié)電容放電, VD由Vin+Vc1下降到零,創(chuàng)造了S1的ZVS條件。箝位電路斷開,ic1→0。iL1=im=-Im,ip=0。變壓器原邊繞組電壓Vp則從-Vc1變化到Vin。Vc1=DVin/(1-D)保持不變。

S1導(dǎo)通時間為DTs,變壓器原邊繞組承受電壓為Vin;S1關(guān)斷時間為(1-D)Ts,變壓器原邊繞組承受電壓為-Vc1。由伏秒平衡關(guān)系可得:DTsVin=(1-D)Vc1,即Vc1=DVin/(1-D)。

有源箝位正激變換器變壓器磁芯工作在雙向?qū)ΨQ磁化狀態(tài),提高了磁芯的利用率,箝位電容的穩(wěn)態(tài)電壓隨開關(guān)占空比而自動調(diào)節(jié),因而占空比可大于0.5;Vo一定時,主開關(guān)管?輔助開關(guān)應(yīng)力隨Vin的變化不大;所以,在占空比和開關(guān)應(yīng)力允許的范圍內(nèi),能夠適應(yīng)輸入電壓較大變化范圍的情況。不足之處是增加了一個管子,使得電路變得復(fù)雜。

電路參數(shù)的設(shè)計與計算公式

主電路拓?fù)淙鐖D1 所示,它的箝位電容電壓為:Vc1=DVin/(1-D),箝位電容的耐壓要大于此值,容量只要足夠大即可保證電路的正常工作,在制作中,選用的箝位電容容量為47μF??刂菩酒x用UC3823N實現(xiàn)PWM控制,控制芯片檢測開關(guān)電流加上斜波信號(由PWM輸出信號14腳生產(chǎn))送至芯片的電流端(7 腳);電壓信號經(jīng)取樣電阻分壓和誤差放大器補(bǔ)償產(chǎn)生一輸出信號(3腳),此信號與7腳信號比較后產(chǎn)生輸出占空比信號PWM,再由脈沖變壓器隔離和原邊驅(qū)動器UC1707產(chǎn)生兩列互補(bǔ)驅(qū)動且死區(qū)可調(diào)的脈沖驅(qū)動變換器的主管S1和箝位管S2。合適的參數(shù)設(shè)計,尤其是電壓補(bǔ)償器及斜波補(bǔ)償?shù)倪x擇將使系統(tǒng)穩(wěn)定可靠地工作。

經(jīng)理論分析及實踐,在設(shè)計有源箝位同步整流正激變換器時,需要計算各種參數(shù),在實踐過程中,總結(jié)了一套如何設(shè)計變換器的公式,以下給出這些公式,以便于參考。另外還要注意,用公式計算出來的值還要留出適當(dāng)?shù)脑6?,以保證電源的可靠性。

(1)變壓器的初級匝數(shù)N1

N1=U·D·104/f·△Bm·Ac

其中U為輸入電壓;D為占空比;f為開關(guān)頻率;△Bm為磁感應(yīng)增量;Ac為磁芯的有效面積。

(2)變壓器的次級匝數(shù)N2

N2=N1·Vo/D

其中Vo為輸出電壓。

(3)初級電感量Lpri

m的確定

初級電感量Lprim由下式?jīng)Q定

Lprim=uo·ua·N12·Ae/le

式中,uo為真空磁導(dǎo)率;ua是振幅磁導(dǎo)率;N1是初級繞組匝數(shù);Ae是磁芯的有效截面積;e是有效磁路長度。

(4)輸出電壓

Vo=D·Vin·N1/N2

(5)輸出電感L和電容C的計算

L=2.5R/f

取IL(peak)=1.1Io

C=△IL/8f△Vo

ESR(max)=△Vo/△IL

其中 △IL=0.2Io

(6)導(dǎo)線的參數(shù)

導(dǎo)線的截面積與線徑d

Sm=Ii/J

di=1.13Sm1/2

其中Ii為各繞組電流有效值(A);J為電流密度,它是根據(jù)銅損計算出來的,根據(jù)工程實踐經(jīng)驗,導(dǎo)線的電流密度在自然風(fēng)冷時選擇2-4(A/mm2),而在強(qiáng)制風(fēng)冷時選擇3-5(A/mm2),其值是適宜的。

計算所需導(dǎo)線直徑時,應(yīng)考慮趨膚效應(yīng)的影響。當(dāng)導(dǎo)線直徑大于2倍趨膚深度時,應(yīng)盡可能采用多股導(dǎo)線并繞。當(dāng)用n股導(dǎo)線并繞時,每股導(dǎo)線的直經(jīng)din按下列公式計算:

din=di/n1/2

銅線的趨膚深度△有以下經(jīng)驗公式:

△=66.1/f1/2

用上述公式計算△后,與di相比較,在di大于2△時,應(yīng)采用多股導(dǎo)線并繞,n的大小以din不大于2△為好。同步整流技術(shù)存在的問題及解決方案

同步整流技術(shù)的基礎(chǔ)是應(yīng)用MOSFET替代二極管整流器,但MOSFET如用為開關(guān)具用雙向?qū)ǖ奶匦?。這一特性使得含有同步整流技術(shù)的變換器,在使用中產(chǎn)生了下述問題。

1 應(yīng)用同步整流的變換器并聯(lián)運行的問題

同步整流技術(shù)一般應(yīng)用在低壓大電流情況下,因而往往將多個具有同步整流技術(shù)的變換器并聯(lián)使用,當(dāng)并聯(lián)的兩個變換器輸出電壓不同,且差值達(dá)到一定值時,輸出電壓低的變換器的輸出電流將反向,輸出電壓高的變換器就既給負(fù)載提供電流又為輸出電壓低的變換器提供電流,從而加大輸出電壓高的變換器負(fù)荷,結(jié)果沒有達(dá)到并聯(lián)增大負(fù)載電流的目的。另外還有自振蕩問題,這將導(dǎo)致MOSFET的電壓應(yīng)力增加,給變換器輸出帶來諧波干擾。對這個問題,我們給電源設(shè)計了電壓調(diào)整端,輸出電壓在一定范圍內(nèi)連續(xù)可調(diào),如用戶需要并聯(lián)運行,只需將電壓精準(zhǔn)地調(diào)整一致即可。

2 效率問題

在輕載條件下,使用二極管整流器的變換器會進(jìn)入電流不連續(xù)工件模式(DCM),但對于使用了同步整流技術(shù)的變換器,由于MOSFET的雙向?qū)?span style="color: rgb(51, 51, 51); ">通性,使得負(fù)載電流繼續(xù)反向流過輸出電感,并形成環(huán)路電流,造成了多余的損耗,限制了變換器在輕載條件下實現(xiàn)高效率。另外,當(dāng)輸入電壓變化時,效率也會發(fā)生較大的變化。這些都是變換器工作在不同的模式,造成了能流回饋。實驗結(jié)果

應(yīng)用以上分析的電路拓?fù)浼半娐穮?shù)設(shè)計了一臺二次電源模塊,樣機(jī)的參數(shù)如下:輸入電壓48V(36-72V),輸出電壓/電流為2.1/40A,開關(guān)頻率為250KHz,變壓器磁芯選用EC28鐵氧體,主開關(guān)管S1及箝位管S2選用IRF640,同步整流管選用IRL3803S,其通態(tài)電阻Rds僅為 6mΩ。在輸入電壓為48V時,滿載效率為85%。經(jīng)小批量生產(chǎn)及電路參數(shù)的微調(diào),產(chǎn)品的各方面性能均達(dá)到要求,現(xiàn)已開始批量生產(chǎn)。

結(jié)論

本文介紹了有源箝位自驅(qū)動同步整流正激變換器的工作原理,各電路參數(shù)及計算公式,采用這種電路拓?fù)?,能很好的實現(xiàn)低壓大電流開關(guān)變換器。這種方案實現(xiàn)了高效率?高可靠性,又實現(xiàn)了低壓大電流的輸出,滿足了IT行業(yè)發(fā)展的需要,所以這種方案具有極大的市場應(yīng)用價值。




關(guān)鍵詞: 開關(guān)電源來

評論


技術(shù)專區(qū)

關(guān)閉