何時使用 BJT 電源開關(guān)
今天,開關(guān)電源將把 MOSFET 作為電源開關(guān)幾乎是意料之中的事情。但在一些實例中,與 MOSFET 相比,雙極性結(jié)式晶體管 (BJT) 可能仍然會有一定的優(yōu)勢。特別是在離線電源中,成本和高電壓(大于 1kV)是使用 BJT 而非 MOSFET 的兩大理由。
本文引用地址:http://butianyuan.cn/article/201612/328165.htm在低功耗(3W 及以下)反激式電源中,很難在成本上擊敗 BJT。大批量購買時,一個 13003 NPN 晶體管價格可低至 0.03 美元。該器件不僅可處理 700V VCE,而且無需過大的基流便可驅(qū)動幾百毫安的電流。使用 BJT,增益和功率耗散可能會將實際使用限制在低功耗應用中。在這些低功耗標準下,MOSFET 與 BJT 之間的效率差異非常細微。下圖 1 對比了兩個相似 5V/1W 設計的效率。第一個設計是PMP8968使用 MOSFET,而另一個設計則是PMP9059使用 BJT。這并不是完全公平的對比,因為這兩個電源在設計上采用不同的輸入電壓運行,但它說明了它們的效率有多相似。
圖1:PMP8968MOSFET 設計與PMP9059BJT 設計的效率對比
有些新控制器實際是設計用于驅(qū)動 BJT 的,目的是提供最低成本的解決方案。在大多數(shù)情況下,具有外部 BJT 的控制器比包含集成型 MOSFET 的控制器便宜。在使用 BJT 控制器進行設計時,必須注意確保 BJT 的基極驅(qū)動與增益足以在變壓器中提供必要的峰值電流。
在稍微偏高的功率級下,F(xiàn)ET 與 BJT 的效率差異就會變得較為明顯,原因在于 BJT 較差的開關(guān)特性與壓降。但是,對于輸入電壓高于 100-240VAC 典型家用及商用電壓范圍的應用來說,BJT 可能仍有優(yōu)勢。工業(yè)應用與功率計就是這種情況的兩個實例,它們可能需要更高的輸入電壓。價格合理的 MOSFET 只能用于 1kV 以下。在有些功率計應用中,線路電壓可能會超過 480VACrms。在整流器后會達到 680Vdc 以上的電壓。對于三相位輸入,這一數(shù)字可能還會更高。電源開關(guān)需要能夠承受這種電壓以及反射輸出電壓與漏電峰值。在這些應用中,MOSFET 可能根本就無法作為選項,因此 BJT 就成了最簡單、最低成本的解決方案(見PMP9044,以下提供鏈接)。
我們之前討論過,當功率級提高到 3W 以上時,BJT 中的開關(guān)損失可能就會成為大問題。使用級聯(lián)連接來驅(qū)動 BJT 可以緩解這一問題。下圖 2(摘自 PMP7040)是級聯(lián)連接的工作情況。BJT (Q1) 的基極連接至 VCC 電軌,同時發(fā)射極被拉低用以打開開關(guān)。在UCC28610內(nèi)部,一個低電壓 MOSFET 將 DRV 引腳拉低,并由一個內(nèi)部電流感應來安排峰值開關(guān)電流。由內(nèi)部 MOSFET 實現(xiàn)快速關(guān)斷,因為它與外部高電壓 BJT 串聯(lián)。
圖2:PMP7040 原理圖展示級聯(lián)連接的工作情況
總之,BJT 可能會在您的電源中具有重要意義,仍然是有一些原因的。在低于 3W 的應用中,它們可能會在不怎么影響性能的情況下,具有低成本優(yōu)勢。在更高電壓下,它們可在 MOSFET 選擇可能具有局限性的情況下提供更多選擇。此外,我們還看到了將級聯(lián)連接用于提高 BJT 開關(guān)性能的方法。下面給出了一些PowerLab設計的鏈接,以重點說明這些方面……
低功耗、低成本BJT 反激式解決方案:
- PMP9059— 120VAC 輸入、5V/200mA
- PMP9074— 85VAC-265VAC 輸入、12V/3W
高輸入電壓BJT 反激式解決方案:
- PMP6741— 85Vdc-576Vdc 輸入、24V/12W
- PMP9044— 3 相位 AC 輸入、3.3V/0.5A
級聯(lián)驅(qū)動BJT 反激式解決方案:
- PMP6710— 85VAC-265VAC 輸入、12V/1A
- PMP7040.1— 147-400VAC 輸入、20V/0.25A
評論