新聞中心

EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 微位移步進(jìn)電機(jī)控制系統(tǒng)設(shè)計(jì)

微位移步進(jìn)電機(jī)控制系統(tǒng)設(shè)計(jì)

作者: 時(shí)間:2016-12-21 來(lái)源:網(wǎng)絡(luò) 收藏
0引言

步進(jìn)電機(jī)是將電脈沖信號(hào)轉(zhuǎn)變?yōu)榻俏灰苹蚓€位移的開(kāi)環(huán)控制器件。在非超載的情況下,電機(jī)的轉(zhuǎn)速、停止的位置只取決于脈沖信號(hào)的頻率和脈沖數(shù),而不受負(fù)載變化的影響,它的旋轉(zhuǎn)是以固定的角度一步一步運(yùn)行的,可以通過(guò)控制脈沖個(gè)數(shù)來(lái)控制角位移量,從而達(dá)到準(zhǔn)確定位的目的。為實(shí)現(xiàn)對(duì)步進(jìn)電機(jī)的控制,一般可采用單片機(jī)為控制器,通過(guò)一些大規(guī)模集成電路來(lái)控制其脈沖輸出頻率和脈沖輸出數(shù)以實(shí)現(xiàn)步進(jìn)電機(jī)的控制,然而整個(gè)系統(tǒng)的準(zhǔn)確性、可靠性都存在缺陷。本系統(tǒng)是為實(shí)驗(yàn)室某項(xiàng)目服務(wù)的子系統(tǒng),系統(tǒng)的研究目的在于精確、快速、穩(wěn)定地調(diào)節(jié)實(shí)驗(yàn)裝置的相對(duì)移動(dòng),找到最佳位置、角度安放裝置,故本系統(tǒng)擬采用浮點(diǎn)型DSP28335作為系統(tǒng)控制器,擬采用其集成的PWM輸出模塊,減少外圍電路的使用,提高了系統(tǒng)的可靠性和系統(tǒng)的控制精度。

1系統(tǒng)總體方案設(shè)計(jì)

本系統(tǒng)總體設(shè)計(jì)框圖如圖1所示。擬采用數(shù)字信號(hào)處理芯片DSP28335根據(jù)控制算法輸出一個(gè)特定的PWM脈沖序列,該脈沖序列經(jīng)由特定的步進(jìn)電機(jī)驅(qū)動(dòng)器實(shí)現(xiàn)對(duì)高精度的42步進(jìn)電機(jī)的控制,通過(guò)控制算法自動(dòng)或者手動(dòng)調(diào)節(jié)電機(jī)的運(yùn)行狀態(tài)和運(yùn)行速度并送液晶實(shí)時(shí)顯示。通過(guò)對(duì)系統(tǒng)點(diǎn)位的檢測(cè)來(lái)判定是否達(dá)到系統(tǒng)的控制目的,最終通過(guò)一定算法完成系統(tǒng)安裝位置的選定。


圖1 系統(tǒng)總體設(shè)計(jì)框圖

2系統(tǒng)硬件實(shí)現(xiàn)

本系統(tǒng)擬選用的主控制器為TMS320F28335,其具有150MHz的高速處理能力,12位16通道ADC,具備32位浮點(diǎn)處理單元,有多達(dá)18路的PWM輸出,其中有6路為TI特有的更高精度的PWM輸出(HRPWM)。本系統(tǒng)中正是使用了其獨(dú)立的PWM模塊產(chǎn)生脈沖信號(hào)。因課題需要精確定位故選用控制精度為1.8°的42步進(jìn)電機(jī)實(shí)現(xiàn)裝置推動(dòng),步進(jìn)電機(jī)是將電脈沖信號(hào)轉(zhuǎn)變?yōu)榻俏灰苹蚓€位移的開(kāi)環(huán)控制元步進(jìn)電機(jī)件,其結(jié)構(gòu)圖如圖2所示。


圖2 步進(jìn)電機(jī)結(jié)構(gòu)圖

從理論上講,步進(jìn)電機(jī)的驅(qū)動(dòng)方式只需通過(guò)循環(huán)改變定子線圈勵(lì)磁就能實(shí)現(xiàn),但是由于電機(jī)對(duì)電路驅(qū)動(dòng)能力要求高,故本系統(tǒng)采用外接驅(qū)動(dòng)芯片A3977,A3977細(xì)分驅(qū)動(dòng)器采用高性能的專用微步距電腦控制芯片,其含內(nèi)置轉(zhuǎn)換器的完整的微步電動(dòng)機(jī)驅(qū)動(dòng)器。只需在一個(gè)步進(jìn)輸入一個(gè)脈沖即可驅(qū)動(dòng)電動(dòng)機(jī)進(jìn)行一個(gè)步進(jìn),通過(guò)兩個(gè)邏輯輸入確定所處的全、半、1/4或1/8步進(jìn)模式。其內(nèi)部同步整流控制電路用來(lái)改善脈寬調(diào)制(PWM)操作時(shí)的功率消耗,并且該芯片可以自動(dòng)地控制其PWM操作工作在快、慢及混合衰減模式。本驅(qū)動(dòng)芯片設(shè)置為全步模式,其采用共陰接法en使能,dir控制方向,step信號(hào)接收脈沖信號(hào),信號(hào)的頻率決定轉(zhuǎn)速,脈沖的個(gè)數(shù)控制電機(jī)的步進(jìn)距離。系統(tǒng)的總體硬件圖如圖3所示,上位機(jī)對(duì)信號(hào)采集后通信DSP,使DSP產(chǎn)生相應(yīng)的控制信號(hào)輸給連接好42電機(jī)的步進(jìn)電機(jī)驅(qū)動(dòng)器A3977SED,控制電機(jī)的運(yùn)行完成系統(tǒng)控制目的。


圖3 系統(tǒng)總體硬件圖

3系統(tǒng)軟件設(shè)計(jì)

本系統(tǒng)的軟件設(shè)計(jì)擬從兩方面展開(kāi):1 PWM脈沖的產(chǎn)生設(shè)計(jì),2步進(jìn)電機(jī)的控制方式設(shè)計(jì)。

3.1 PWM脈沖序列的產(chǎn)生

PWM是利用微處理器的數(shù)字輸出來(lái)對(duì)模擬電路進(jìn)行控制的一種非常有效的技術(shù),廣泛應(yīng)用在從測(cè)量、通信到功率控制與變換的許多領(lǐng)域中。本系統(tǒng)采用DSP產(chǎn)生脈沖序列,DSP28335共12路16位的ePWM,能進(jìn)行頻率和占空比控制。PWM信號(hào)頻率由時(shí)基周期寄存器TBPDR和時(shí)基計(jì)數(shù)器的計(jì)數(shù)模式?jīng)Q定。初始化程序采用的計(jì)數(shù)模式為遞增計(jì)數(shù)模式。在遞增計(jì)數(shù)模式下,時(shí)基計(jì)數(shù)器從零開(kāi)始增加,直到達(dá)到周期寄存器值(TBPDR),然后時(shí)基計(jì)數(shù)器復(fù)位到零,再次開(kāi)始增加。

PWM信號(hào)周期與頻率的計(jì)算如下:

ePWM的時(shí)鐘

TBCLK=SYSCLKOUT/(HSPCLKDIV×

CLKDIV):(1)

Tpwm=(TBPRD+1)*Ttbclk:(2)

Fpwm=1/(Tpwm) (3)

其初設(shè)置程序流程圖如圖4所示。


圖4 PWM初始化流程圖

3.2步進(jìn)電機(jī)的控制

本系統(tǒng)設(shè)計(jì)了手動(dòng)和自動(dòng)兩種控制方式,手動(dòng)模式主要運(yùn)用于對(duì)自動(dòng)化和控制要求不高的場(chǎng)合,通過(guò)按鍵實(shí)現(xiàn)電機(jī)的步移、加減速、正反轉(zhuǎn)和啟停。自動(dòng)模式運(yùn)用于對(duì)自動(dòng)化程度、控制精度要求高的工況。針對(duì)實(shí)驗(yàn)室項(xiàng)目,本系統(tǒng)采用的控制方式主要為自動(dòng)模式。上位機(jī)上電后即開(kāi)始檢測(cè)實(shí)驗(yàn)室裝置(流量傳感器)輸出信號(hào),通過(guò)與事先設(shè)定好的兩個(gè)閾值A(chǔ)和B(B>A)進(jìn)行比較,當(dāng)信號(hào)強(qiáng)度為零時(shí)電機(jī)推動(dòng)傳感器高速循環(huán)掃描現(xiàn)場(chǎng)直到信號(hào)強(qiáng)度大于閾值A(chǔ)時(shí),系統(tǒng)判斷為粗調(diào)成功。此后系統(tǒng)進(jìn)入微調(diào)階段,電機(jī)進(jìn)入低速運(yùn)行模式,傳感器低速移動(dòng)直到信號(hào)強(qiáng)度大于或者等于B強(qiáng)度時(shí)系統(tǒng)控制電機(jī)停止運(yùn)行。系統(tǒng)的控制流程圖如圖5所示。在本系統(tǒng)中針對(duì)不同的工況設(shè)計(jì)的兩個(gè)信號(hào)閾值為程序設(shè)計(jì)中的周期寄存器提供了設(shè)置依據(jù),因?qū)嶒?yàn)室系統(tǒng)對(duì)精度要求較高,故周期寄存器設(shè)置的初值都較大從而使Fpwm的值較小,電機(jī)的轉(zhuǎn)速也相應(yīng)較低。在本系統(tǒng)中選用EPWM2B端口輸出PWM的脈沖,GPIO1控制電機(jī)轉(zhuǎn)動(dòng)方向,GPIO2控制電機(jī)的啟停。

上一頁(yè) 1 2 下一頁(yè)

評(píng)論


技術(shù)專區(qū)

關(guān)閉