新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 高壓鋰離子電池發(fā)展受限?這幾款電解液添加劑帶來新生機

高壓鋰離子電池發(fā)展受限?這幾款電解液添加劑帶來新生機

作者: 時間:2017-06-03 來源:網(wǎng)絡(luò) 收藏

普通鋰離子池在高電壓下的氧化分解限制了高壓鋰離子電池的發(fā)展,為了解決這一問題,需要設(shè)計、合成新型的耐高壓或?qū)ふ液线m的添加劑。然而從經(jīng)濟效益考慮,發(fā)展合適的電解液添加劑來穩(wěn)定電極/電解液界面更加受到研究者們的青睞。本文中介紹了高壓鋰離子電池電解液添加劑方面的研究進(jìn)展,并按照添加劑的種類將其分為6部分進(jìn)行探討:含硼類添加劑、有機磷類添加劑、碳酸酯類添加劑、含硫添加劑、離子液體添加劑及其它類型添加劑。

本文引用地址:http://butianyuan.cn/article/201706/346924.htm

含硼添加劑

含硼化合物經(jīng)常作為添加劑應(yīng)用到不同正極材料的鋰離子電池中,在電池循環(huán)過程中,很多含硼化合物會在正極表面形成保護(hù)膜,來穩(wěn)定電極/電解液之間的界面,從而提高電池性能??紤]到含硼化合物的這一獨特性能,眾多學(xué)者開始嘗試將其應(yīng)用到高壓鋰離子電池中,來增強正極界面穩(wěn)定性。

Li等將三(三甲基烷)硼酸酶 (TMSB)應(yīng)用到以 Li[Li0.2Mn0.54Ni0.13Co0.13]O2 作正極材料的高壓鋰離子電池中,發(fā)現(xiàn)當(dāng)有0.5%(質(zhì)量分?jǐn)?shù))TMSB 添加劑存在時,循環(huán)200圈后容量保持74%(電位范圍2-4.8 V,充放電倍率為0.5 C),而沒有添加劑存在時,容量保持僅為19%。

為了解TMSB對正極表面修飾的作用機制,ZUO 等將TMSB添加到LiNi0.5Co0.2Mn0.3O2石墨全電池中,并分別對正極材料進(jìn)行了XPS與TEM分析,得到下圖所示的結(jié)論:在沒有添加劑存在時,隨著循環(huán)次數(shù)的增加,會逐漸在正極表面形成一層有LiF存在的正極電解液界面(CEI)膜,這層膜較厚而且阻抗較高;加入TMSB后,缺電子的含硼類化合物會提高正極表面 LiF 的溶解度,形成的SEI膜較薄,阻抗較低。

除了TMSB ,現(xiàn)如今應(yīng)用到高壓鋰離子電池中的含硼類添加劑還包括雙草酸硼酸鋰(LiBOB)、雙氟草酸硼酸鋰 (LiFOB)、四甲基硼酸酯(TMB) 、硼酸三甲酯(TB)以及三甲基環(huán)三硼氧烷等,這些添加劑在循環(huán)過程中會比電解液溶劑優(yōu)先被氧化,形成的保護(hù)性膜覆蓋到正極表面,這層保護(hù)性膜具有良好的離子導(dǎo)電性,能抑制電解液在隨后的循環(huán)中發(fā)生氧化分解以及正極材料結(jié)構(gòu)的破壞,穩(wěn)定電極/電解液界面,并最終提高高壓鋰離子電池的循環(huán)穩(wěn)定性。

有機磷添加劑

根據(jù)前線軌道能量與電化學(xué)穩(wěn)定性的關(guān)系:分子的 HOMO 越高,軌道中的電子越不穩(wěn)定,氧化性越好:分子的 LUMO 越低,越容易得電子,還原性越好。

因此,通過計算添加劑分子與溶劑分子的前線軌道能量,可以從理論上判斷添加劑的可行性。SONG 等利用Gaussian 09 程序,采用密度泛函理論(DFT) 在 B3LYP/6-311+(3df,2p) 水平下分別對三(2,2,2-三氟乙基)亞磷酸酯 (TFEP) 、三苯基亞磷酸酯 (TPP) 、三(三甲基硅基)亞磷酸酯(TMSP) 以及亞磷酸三甲酯(TMP) 類添加劑以及溶劑分子進(jìn)行優(yōu)化,得到相應(yīng)的優(yōu)勢構(gòu)象,并對其進(jìn)行了前線軌道分析。下圖可以看出,這些亞磷酸酯化合物的 HOMO 能量遠(yuǎn)高于溶劑分子,表明亞磷酸酯類化合物比溶劑分子具有更高的氧化性,在正極表面能優(yōu)先發(fā)生電化學(xué)氧化,形成SEI膜覆蓋在正極表面。

除了亞磷酸酯類添加劑,目前所用的有機磷類添加劑還包括磷酸酯類化合物。 XIA 等將三烯丙基磷酸酯(TAP)添加劑應(yīng)用到 Li[Ni0.42Mn0.42Co0.16]O2 (NMC442)石墨全電池中,發(fā)現(xiàn)當(dāng)有TAP存在時會顯著提高庫侖效率,長時間循環(huán)后,仍然具有很高的容量保持。XPS結(jié)果表明,在循環(huán)過程中,烯丙基可能會發(fā)生交聯(lián)電聚合反應(yīng),得到的產(chǎn)物覆蓋到電極表面,形成均勻的SEI膜。

碳酸酯類添加劑

含氟皖基 (PFA) 化合物具有很高的電化學(xué)穩(wěn)定性,同時具備疏水性與疏油性的特性,當(dāng) PFA 添加到有機溶劑中,疏溶劑的PFA會凝聚到一起形成膠團。由于PFA的這一特性,ZHU等嘗試將全氟烴基(下圖中TEM-EC、PFB-EC、PFH-EC 、PFO-EC)取代的碳酸亞乙酯添加到高壓鋰離子電池電解液中,對于Li1.2Ni0.15Mn0.55Co0.1O2石墨電池,當(dāng)加入0.5% (質(zhì)量分?jǐn)?shù))的PFO-EC后,電池在長時間循環(huán)過程中性能明顯提高,這主要是因為添加劑在循環(huán)過程中形成了雙層的鈍化膜,同時減少電極表面的降解與電解液的氧化分解。

含硫添加劑

近年來,將有機磺酸酯作為添加劑應(yīng)用到鋰離子電池中的報道很多。PIRES將 1,3-丙磺酸內(nèi)酯 (PS) 加入到高壓鋰離子電池電解液中,有效抑制了電極表面副反應(yīng)的發(fā)生以及金屬離子的溶解。ZHENG 等用二甲磺酰甲烷(DMSM) 作為高壓 LiNil/3Col/3Mn1/3O2石墨電池電解液添加劑,XPS、SEM以及TEM分析結(jié)果表明,MMDS的存在對正極SEI膜具有很好的修飾作用,即使在高壓下也能顯著降低電極/電解液界面阻抗,提高正極材料的循環(huán)穩(wěn)定性。此外,HUANG等分別研究了三氟甲基苯硫醚 (PTS)添加劑在高壓鋰離子電池室溫及高溫下的循環(huán)性能。理論計算數(shù)據(jù)與實驗結(jié)果分析得出,在循環(huán)過程中PTS 比溶劑分子優(yōu)先被氧化,形成的SEI膜提高了電池在高電壓下的循環(huán)穩(wěn)定性。此外,一些噻吩及其衍生物也被考慮作為高壓鋰離子電池添加劑使用,當(dāng)加入這些添加劑后,會在正極表面形成聚合物膜,避免了電解液在高壓下的氧化分解。

離子液體添加劑

離子液體是一種低溫熔融鹽,因其具備蒸汽壓低、電導(dǎo)率高、不易燃、熱穩(wěn)定及電化學(xué)穩(wěn)定性高等優(yōu)點而被廣泛應(yīng)用到鋰離子電池中。

目前已報道的文獻(xiàn)主要是將純離子液體作為普通鋰離子電池電解液使用,中國科學(xué)院過程工程研究所李放放課題組考慮到離子液體獨特的物理化學(xué)性質(zhì),嘗試將其作為添加劑應(yīng)用到高壓鋰離子電池中,如分別將4種烯烴取代咪唑雙(三氟甲基磺酰)亞胺離子液體添加到了1.2 mol/L的LiPF6/EC/EMC電解液中,并對其進(jìn)行了循環(huán)性能測試,見下圖。結(jié)果表明,首次充放電效率都明顯提高,尤其添加 3% (質(zhì)量分?jǐn)?shù))的[AVlm][TFSI] 離子液體時,電池的放電容量和循環(huán)性能最好。

此外,BAE 等用雙(三氟甲基磺酰)亞胺三乙基 (2-甲氧乙基)季磷鹽 (TEMEP-TFSI)作有機電解液添加劑,發(fā)現(xiàn)TEMEP-TFSI可以有效提高 Li/LiMn1.5Ni0.5O4半電池的容量保持率,同時可降低電解液的可燃性。TEM和XPS 的結(jié)果表明,添加劑在LNMO表面形成了穩(wěn)定保護(hù)膜,有效抑制了電解液的分解。

其他添加劑類型

除了上面提到的幾種類型的添加劑外,CHEN等嘗試用有機硅類化合物作高壓鋰離子電池添加劑,當(dāng)向電解液中加入0.5% (質(zhì)量分?jǐn)?shù))的烯丙氧基三甲硅 (AMSL)時,電池的循環(huán)性能與熱穩(wěn)定性明顯提高;SEM、XPS 及 FTIR 分析結(jié)果表明,AMSL會在正極表面形成保護(hù)性膜:另外通過對石墨負(fù)極進(jìn)行循環(huán)性能以及 CV 測試,發(fā)現(xiàn)加入添加劑后放電容量會輕微增加,與不含添加劑時的 CV曲線相比,加入AMSL后會在原來還原峰,相對較高的電壓處出現(xiàn)一個新的還原峰,表明 AMSL會優(yōu)先被還原,形成穩(wěn)定的SEI 膜覆蓋到石墨負(fù)極的表面,抑制了電解液在電極表面進(jìn)一步的還原分解,增強了循環(huán)穩(wěn)定性,由于AMSL能同時在LiNi0.5Mn1.5O4與石墨負(fù)極形成SEI膜來穩(wěn)定電極界面,因此其有望成為一種理想的添加劑得到更進(jìn)一步的應(yīng)用。一些苯的衍生物也可用作高壓鋰離子電池添加劑,KANG 等將 1,3,5-羥基苯 (THB) 加入到碳酸酯類電解液中,在高溫、高壓下表現(xiàn)出了良好的熱穩(wěn)定性和電化學(xué)穩(wěn)定性。

總結(jié)

傳統(tǒng)使用的有機碳酸酯類電解液在高電壓下持續(xù)的氧化分解以及正極材料過渡金屬離子的溶解問題,限制了高壓正極材料的容量發(fā)揮和應(yīng)用,發(fā)展高壓電解液添加劑是改善電池性能既經(jīng)濟又有效的方法。現(xiàn)今所報道的高壓添加劑在循環(huán)過程中一般會比溶劑分子優(yōu)先氧化,在正極表面形成鈍化膜,穩(wěn)定電極/電解液界面,最終實現(xiàn)電解液能在高壓下穩(wěn)定存在。

從目前公開報道的國內(nèi)外研究進(jìn)展來看,在高壓電解液的開發(fā)方面,引入高壓添加劑一般可以獲得 4.4-4.5 V 的電解液。但是對于富鋰、磷酸釩鋰、高壓鎳錳等正極材料,由于可充電電壓達(dá)到了4.8V 甚至5V 以上,必須開發(fā)可耐更高電壓的電解液才能獲得更高的能量密度。



關(guān)鍵詞: 電解液 鋰電池

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉