新聞中心

EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于全陶瓷電容的112W長(zhǎng)串LED boost驅(qū)動(dòng)器方案

基于全陶瓷電容的112W長(zhǎng)串LED boost驅(qū)動(dòng)器方案

作者: 時(shí)間:2017-06-03 來(lái)源:網(wǎng)絡(luò) 收藏

本參考設(shè)計(jì)采用構(gòu)建112.5W boost 器,用于驅(qū)動(dòng)長(zhǎng)串LED。這些長(zhǎng)串LED被廣泛用于路燈和停車場(chǎng)照明。

本文引用地址:http://www.butianyuan.cn/article/201706/347127.htm

  輸入電壓:24VDC ±5% (1.49A)


  VLED配置:兩串并聯(lián),每串由19只WLED組成,5Ω電阻用于電流平衡。每串電流為750mA,在75V驅(qū)動(dòng)下提供1.5A的電流。


  調(diào)光:50μs (最小值)導(dǎo)通脈沖,200:1最高調(diào)光比,100Hz調(diào)光頻率。


  注:本設(shè)計(jì)已經(jīng)過(guò)驗(yàn)證。但并未進(jìn)行詳細(xì)測(cè)試,有些細(xì)節(jié)問(wèn)題尚需進(jìn)一步測(cè)試。


  電路說(shuō)明


  概述


  本參考設(shè)計(jì)用于為長(zhǎng)串LED提供,長(zhǎng)串LED的應(yīng)用不僅限于路燈和停車場(chǎng)照明。長(zhǎng)串LED允許采用高性價(jià)比的方案,另外,由于各個(gè)LED具有相同電流,可以很好地控制亮度變化。本設(shè)計(jì)采用24V輸入,可提供高達(dá)75V的輸出,可驅(qū)動(dòng)1.5A LED燈串(或多串并聯(lián))。測(cè)量到的輸入功率為115.49W,輸出功率為111.6W,具有96.6%的效率。


圖2. LED驅(qū)動(dòng)器原理圖

圖3. LED驅(qū)動(dòng)器布局

 PCB


   boost設(shè)計(jì)的印制電路板(PCB)采用通用的兩層板(圖1和圖3)。有些PCB功能要求為可選項(xiàng),測(cè)試時(shí)并沒(méi)有組裝這些電路,原理圖(圖2)中將其標(biāo)注為“no-pop”。電路板在IC下方布設(shè)接地島,通過(guò)單點(diǎn)連接至功率地,以確保低噪聲特性。由于很多路燈生產(chǎn)廠商沒(méi)有適當(dāng)焊接設(shè)備焊接其它形式的封裝,例如TQFN封裝,因此本設(shè)計(jì)采用了TSSOP封裝IC。圖4給出本設(shè)計(jì)的材料清單。


圖4. 材料清單


圖5. 設(shè)計(jì)表格提供了MOSFET和電感的峰值電流和RMS電流。

拓?fù)?/p>


  設(shè)計(jì)采用工作在200kHz連續(xù)模式的boost調(diào)節(jié)器。圖5所示表格給出了MOSFET和電感的RMS電流和峰值電流。連續(xù)模式設(shè)計(jì)能夠保持較小的MOSFET電流和電感電流。然而,由于MOSFET (Q1)導(dǎo)通期間電流流過(guò)輸出二極管(D2),輸出二極管的反向恢復(fù)損耗較大,并可能導(dǎo)致更大的關(guān)斷噪聲。從圖6電路波形可以看出,占空比為69%時(shí),MOSFET的導(dǎo)通時(shí)間大約為3.4μs,關(guān)斷時(shí)間大約為1.5μs。一旦MOSFET關(guān)斷,漏極電壓將上升到輸出電壓與肖特基二極管壓降之和。


圖7. 輸出電壓(交流耦合)和開(kāi)關(guān)MOSFET檢流電阻的電壓

  MOSFET驅(qū)動(dòng)


  由于采用連續(xù)模式設(shè)計(jì),MOSFET和電感峰值電流低于工作在非連續(xù)模式下的數(shù)值。但是,由于在導(dǎo)通和關(guān)斷期間都有電流流過(guò)MOSFET,MOSFET在兩次轉(zhuǎn)換期間存在較大的開(kāi)關(guān)損耗。以足夠強(qiáng)的驅(qū)動(dòng)能力使MOSFET在5ns內(nèi)完全導(dǎo)通,在10ns內(nèi)完全關(guān)斷(圖8和圖9),保持較低的溫升。如果設(shè)計(jì)中存在EMI問(wèn)題,則改變MOSFET柵極的串聯(lián)電阻R5,以調(diào)整開(kāi)關(guān)時(shí)間。如果這一變化引起功耗過(guò)大,可以增加另一個(gè)MOSFET Q2,與Q1并聯(lián),以降低溫升。


圖9. 漏極電壓下降時(shí)間

輸出電容


  驅(qū)動(dòng)器的輸入和輸出電容可以采用陶瓷電容。陶瓷電容具有更小尺寸,工作更可靠,但容值有限,尤其是在設(shè)計(jì)中要求200V的額定電壓。圖5中,設(shè)計(jì)表格顯示驅(qū)動(dòng)器需要一個(gè)5.4μF電容以滿足輸出紋波電壓的要求;為降低成本和空間,本電路采用4個(gè)1.2μF電容(共4.8μF)。輸出電壓開(kāi)關(guān)紋波為2.88V (圖10和圖11),紋波電流為182mA,是輸出電流的12%,略大于10%目標(biāo)參數(shù),但仍然能夠滿足要求。


圖11. LED電壓(交流耦合)和MOSFET檢流電壓

  調(diào)光


  MAX16834提供很好的調(diào)光。當(dāng)PWMDIM (第12引腳)為低電平時(shí),將發(fā)生三個(gè)動(dòng)作:第一,開(kāi)關(guān)MOSFET Q1的柵極驅(qū)動(dòng)(NDRV,第15引腳)變?yōu)榈碗娖?,避免額外的能量傳送到LED串;第二,調(diào)光MOSFET Q4的柵極驅(qū)動(dòng)(DIMOUT,第20引腳)變?yōu)榈碗娖剑档蚅ED串電流并保持輸出電容電壓固定;最后,為保持補(bǔ)償電容處于穩(wěn)態(tài)電壓,COMP (第5引腳)變?yōu)楦咦钁B(tài),以確保IC在PWMDIM返回高電平時(shí)立即以正確的占空比啟動(dòng)。每個(gè)動(dòng)作都允許極短的PWM導(dǎo)通時(shí)間,因此可提供較高的調(diào)光比。


 縮短導(dǎo)通時(shí)間主要受限于電感的充電時(shí)間,參見(jiàn)圖12和圖13,可以看到電流能夠很好地跟隨DIM脈沖。在電流脈沖的起始位置有衰減,主要是由于電感電流的爬升(大約12μs或2–3個(gè)開(kāi)關(guān)周期)。觀察波形,可以看出需要大約40μs至50μs的時(shí)間電壓才能完全恢復(fù)并建立。如果DIM導(dǎo)通脈沖小于50μs,輸出電壓將在下個(gè)關(guān)斷脈沖的起始處沒(méi)有足夠的時(shí)間。在提高DIM占空比之前,將一直持續(xù)這種現(xiàn)象。因此,滿載(1.5A)時(shí),DIM導(dǎo)通脈沖不應(yīng)低于50μs。這意味著100Hz DIM頻率下,調(diào)光比為200:1。降低最小導(dǎo)通脈沖的唯一途徑是提高輸出電容,這將提高系統(tǒng)的成本,而且在通用照明中并不需要。如果降低LED電流,最小導(dǎo)通時(shí)間可隨之降低,調(diào)光比增大。陶瓷電容表現(xiàn)為壓電效應(yīng),調(diào)光期間會(huì)出現(xiàn)一定的音頻噪聲。不過(guò),通過(guò)適當(dāng)電路板布局,可以最大程度地降低噪聲。


圖13. 大約50μs的調(diào)光脈沖

OVP


  圖14中,LED串開(kāi)路,MAX16834的過(guò)壓保護(hù)(OVP)電路在重新啟動(dòng)之前將首先關(guān)斷驅(qū)動(dòng)器400ms。因?yàn)檩敵鲭娙葺^小,電感儲(chǔ)能可能產(chǎn)生的過(guò)沖,因此采用了107V峰值電壓設(shè)置(高于83V設(shè)計(jì)值)。


  電路調(diào)整及其它輸入、輸出


  R15是線性數(shù)字電位器,可以在0A至1.7A之間任意調(diào)節(jié)LED電流。MAX16834具有一個(gè)輸入(SYNC),用于同步控制器的開(kāi)關(guān)頻率。UVEN輸入允許外部控制驅(qū)動(dòng)器(通/斷)。REFIN輸入端的低阻信號(hào)源可以優(yōu)先于電位器設(shè)置,控制驅(qū)動(dòng)器電流。例如,微控制器經(jīng)過(guò)緩沖的DAC可以通過(guò)REFIN直接控制LED電流。出現(xiàn)故障(例如OVP)時(shí),F(xiàn)LT#輸出低電平。一旦解除故障,信號(hào)變?yōu)楦唠娖?,該信?hào)并不閉鎖。


  溫升


  測(cè)量效率為96.63% (VIN = 24.01V、I_IN = 1.49A、PIN = 115.49W、VLED = 74.9V、I_LED = 1.49A、POUT = 111.60W)。由于電路的頻率較高,驅(qū)動(dòng)器元件并不發(fā)熱。溫度最高的元件為調(diào)光MOSFET Q4,溫升大約41°C。這一溫升是由于小尺寸PCB布局造成的,可以通過(guò)增大漏極附近的覆銅面積改善。電感尺寸較大,具有23°C的溫升,高于預(yù)期的7°C (圖15)。電感似乎吸收了部分MOSFET熱量,因?yàn)樗鼈児灿么竺娣e覆銅焊盤。


  溫度測(cè)量


  以下溫度是在實(shí)際LED負(fù)載測(cè)試中得到的:


  VIN:24VDC


  Ambient:16°CΔT


  L1:39°C23°C


  D1:51°C35°C


  Q1:51°C35°C


  Q3:57°C41°C


  IC:33°C17°C


  上電步驟


  在LED+和LED-之間連接最多20只串聯(lián)LED,同時(shí)串聯(lián)安培表以測(cè)量電流(注:如果LED的正向?qū)妷和耆ヅ洳⑶?或者增加串聯(lián)均衡電阻,可以采用并聯(lián)架構(gòu))。


  在VIN和GND之間連接24V、6A電源。


  在連接器J2插入短路器。


  打開(kāi)24V電源。


  調(diào)節(jié)R15將電流設(shè)置為0至1.5A。


  如果需要調(diào)光,則在DIM IN和GND之間連接PWM信號(hào)(0V至3.3V)。


  按照上述內(nèi)容調(diào)節(jié)PWM占空比,實(shí)現(xiàn)調(diào)光。


圖14. LED串開(kāi)路OVP

圖15. 預(yù)測(cè)電感的溫升。計(jì)算器來(lái)自Coilcraft提供的設(shè)計(jì)支持工具。







評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉