MIMO天線3種技術分析
0 前言
本文引用地址:http://butianyuan.cn/article/201706/351153.htm多入多出(MIMO)系統(tǒng)指在發(fā)射端和接收端同時使用多個天線的通信系統(tǒng)。研究證明,MIMO技術非常適用于城市內(nèi)復雜無線信號傳播環(huán)境下的無線寬帶通信系統(tǒng),在室內(nèi)傳播環(huán)境下的頻譜效率可以達到20~40 bit/s/Hz;而使用傳統(tǒng)無線通信技術在移動蜂窩中的頻譜效率僅為1~5 bit/s/Hz,在點到點的固定微波系統(tǒng)中也只有10~12 bit/s/Hz。通常,射頻信號多徑會引起衰落,因而被視為有害因素。然而研究結果表明,對于MIMO系統(tǒng)來說,多徑可以作為一個有利因素加以利用。MIMO技術作為提高數(shù)據(jù)傳輸速率的重要手段得到人們越來越多的關注,被認為是新一代無線通信技術的革命。
1 MIMO系統(tǒng)的3種主要技術
相關新聞:
奧運會、世界杯“擠走”巴西紅燈區(qū)
圖雷今日上庭等候裁決 英媒悲觀預言恐禁賽一年
當前,MIMO技術主要利用發(fā)射分集的空時編碼、空間復用和波束成型等3種多天線技術來提升無線傳輸速率及品質。
1.1 發(fā)射分集的空時編碼
基于發(fā)射分集技術的空時編碼主要有2種,即空時分組碼(STBC)和空時格碼(STTC)。雖然空時編碼方案不能直接提高數(shù)據(jù)率,但是通過這些并行空間信道獨立、不相關地傳輸信息,從而使信號在接收端獲得分集增益,為數(shù)據(jù)實現(xiàn)高階調(diào)制創(chuàng)造條件。
1.1.1 空時分組碼(STBC)
STBC在發(fā)射端對數(shù)據(jù)流進行聯(lián)合編碼以減小由于信道衰落和噪聲所導致的符號錯誤率,它通過在發(fā)射端增加信號的冗余度,使信號在接收端獲得分集增益,空時分組碼是將同一信息經(jīng)過正交編碼后從多根天線發(fā)射出去。MIMO系統(tǒng)的原理如圖1所示,傳輸信息流s(k)經(jīng)過空時編碼形成N個信息子流ci(k),i=1,...,N。這N個信息子流由N個天線發(fā)射出去,經(jīng)空間信道后由M個接收天線接收。多天線接收機利用先進的空時編碼處理能夠分開并解碼這些數(shù)據(jù)子流,從而實現(xiàn)最佳的處理。特別是這N個子流同時發(fā)射信號,各發(fā)射信號占用同一頻帶,因而并未增加帶寬。若各發(fā)射接收天線間的通道響應獨立不相關,則多入多出系統(tǒng)可以創(chuàng)造多個并行空間信道。
STBC是1998年,Alamouti提出的一種非常簡單的發(fā)射分集技術,由于其簡單的結構和良好的性能,很快進入了3GPP標準。STBC實質上是將同一信息經(jīng)過正交編碼后從2個天線上發(fā)射出去,2路信號由于具有正交性,在接收端就能將2路獨立的信號區(qū)別出來,只需要做簡單的線性合并就可以獲得分集增益。
但是,STBC的正交碼組的構建還存在一定的問題。對于實數(shù)信號星座(PAM星座),它才可以構造編碼速率為1的空時編碼算法。但是,對于一個普通的復數(shù)信號星座,例如MQAM(如16QAM)或MPSK(如8PSK),當發(fā)射天線陣子數(shù)目大于2時,是否存在編碼速率為1的碼組還有待更深入的研究。目前對于發(fā)射天線陣子數(shù)目等于3、4以及大于4的系統(tǒng),如果采用復數(shù)信號星座,那么最大的空時編碼速率只能達到3/4和1/2??梢?,對于采用高階調(diào)制的高速率多天線的無線通信系統(tǒng),如果直接采用空時分組編碼算法,不可能充分地利用系統(tǒng)的有效性。因此,尋找更好的空時分組碼目前已成為一個研究方向;另外,如何在頻率選擇性信道、時間選擇性信道中充分利用空時分組碼的優(yōu)勢也是一個研究課題??傊?,當前STBC還是基于發(fā)射天線陣子數(shù)目等于2的發(fā)射分集技術。
1.1.2 空時格碼(STTC)
STTC是從空時延遲分集發(fā)展來的,而空時延遲分集可以看作是空時格碼的一個特例??諘r格碼具有卷積碼的特征,它將編碼、調(diào)制、發(fā)射分集結合在一起,可以同時獲得分集增益和編碼增益,并且使得系統(tǒng)的性能有很大的提升??諘r格碼利用某種網(wǎng)格圖,將同一信息通過多個天線發(fā)射出去,在接收端采用基于歐式距離的Viterbi譯碼器譯碼。因此譯碼復雜度較高,而且譯碼復雜度將隨著傳輸速率的增加呈指數(shù)增加。
早期的分集模型采用延時發(fā)送分集,這種分集的框圖如圖2所示。編碼后的數(shù)據(jù)首先被重復一次,然后通過一個串/并轉換器,分成2個完全相同的數(shù)據(jù)流。其中一數(shù)據(jù)流經(jīng)過調(diào)制后直接從一個天線發(fā)送出去;另一數(shù)據(jù)流經(jīng)過一個符號的延時后,再經(jīng)調(diào)制從另一個天線發(fā)送出去。由于數(shù)據(jù)在2個天線上同時發(fā)送,不同的只是一路數(shù)據(jù)被延時了一個符號,所以盡管采用了延時編碼,卻不會存在頻帶效率的損失。在接收端,通過Viterbi譯碼可以進行解調(diào)。這種延時的分集就是空時碼的雛形??梢宰C明當前所講的STTC可以由延時發(fā)送分集實現(xiàn)。
延時分集技術的產(chǎn)生使人們很自然地想到,能否存在一種更好的編碼方式,不需要重復編碼,就能在保持同樣的數(shù)據(jù)速率、不犧牲帶寬的情況下獲得更好的性能,這樣就產(chǎn)生了一種新的編碼方式,這就是集空分、時分、調(diào)制于一體的空時編碼。
在空時編碼中,STTC能夠在不增加傳送寬帶和不改變信息速率的情況下,獲得最大的編碼增益和分集增益。
1.2 空間復用
系統(tǒng)將數(shù)據(jù)分割成多份,分別在發(fā)射端的多個天線上發(fā)射出去,接收端接收到多個數(shù)據(jù)的混合信號后,利用不同空間信道間獨立的衰落特性,區(qū)分出這些并行的數(shù)據(jù)流。從而達到在相同的頻率資源內(nèi)獲取更高數(shù)據(jù)速率的目的。空間復用與發(fā)射分集技術不同,它在不同天線上發(fā)射不同信息。
空間復用技術是在發(fā)射端發(fā)射相互獨立的信號,接收端采用干擾抑制的方法進行解碼,此時的空口信道容量隨著天線數(shù)量的增加而線性增大,從而能夠顯著提高系統(tǒng)的傳輸速率(見圖3)。
使用空間復用技術時,接收端必須進行復雜的解碼處理。業(yè)界主要的解碼算法有迫零算法(ZF)、MMSE算法、最大似然解碼算法(MLD)和貝爾實驗室分層空時處理算法(BLAST)。
迫零算法,MMSE算法是線性算法,比較容易實現(xiàn),但對信道的信噪比要求較高,性能不佳;MLD算法具有很好的譯碼性能,但它的解碼復雜度隨著發(fā)射天線數(shù)量的增加呈指數(shù)增加,因此,當發(fā)射天線的數(shù)量很大時,這種算法是不實用的;綜合前述算法優(yōu)點的BLAST算法是性能和復雜度最優(yōu)的。
BLAST算法是貝爾實驗室提出的一種有效的空時處理算法,目前已廣泛應用于MIMO系統(tǒng)中。BLAST算法分為D-BLAST算法和V-BLAST算法。
D-BLAST算法是由貝爾實驗室的G.J.Foschini于1996年提出的。對于D-BLAST算法,原始數(shù)據(jù)被分為若干子數(shù)據(jù)流,每個子流獨立進行編碼,而且被循環(huán)分配到不同的發(fā)射天線。D-BLAST的好處是每個子流的數(shù)據(jù)都可以通過不同的空間路徑到達接收端,從而提高了鏈路的可靠性,但其復雜度太大,難以實際使用。
1998年G.D.Golden和G.J.Foschini提出了改進的V-BLAST算法,該算法不再對所有接收到的信號同時解碼,而是先對最強信號進行解碼,然后在接收信號中減去最強信號,再對剩余信號中最強信號進行解碼,再次減去,如此循環(huán),直到所有信號都被解出。
2002年10月,世界上第一個BLAST芯片在貝爾實驗室問世,這標志著MIMO技術走向商用的開始。
1.3 波束成型技術
波束成型技術又稱為智能天線,通過對多個天線輸出信號的相關性進行相位加權,使信號在某個方向形成同相疊加,在其他方向形成相位抵消,從而實現(xiàn)信號的增益。
當系統(tǒng)發(fā)射端能夠獲取信道狀態(tài)信息時(如TDD系統(tǒng)),系統(tǒng)會根據(jù)信道狀態(tài)調(diào)整每個天線發(fā)射信號的相位(數(shù)據(jù)相同),以保證在目標方向達到最大的增益;當系統(tǒng)發(fā)射端不知道信道狀態(tài)時,可以采用隨機波束成形方法實現(xiàn)多用戶分集。
2 3種技術的優(yōu)缺點及應用場景
空間復用能最大化MIMO系統(tǒng)的平均發(fā)射速率,但只能獲得有限的分集增益,在信噪比較小時使用,可能無法使用高階調(diào)制方式(如16QAM等)。
無線信號在密集城區(qū)、室內(nèi)覆蓋等環(huán)境中會頻繁反射,使得多個空間信道之間的衰落特性更加獨立,從而使得空間復用的效果更加明顯。
無線信號在市郊、農(nóng)村地區(qū),多徑分量少,各空間信道之間的相關性較大,因此空間復用的效果要差許多。
對發(fā)射信號進行空時編碼可以獲得額外的分集增益和編碼增益,從而可以在信噪比相對較小的無線環(huán)境下使用高階調(diào)制方式,但無法獲取空間并行信道帶來的速率紅利。空時編碼技術在無線相關性較大的場合也能很好地發(fā)揮效能。
因此,在MIMO的實際使用中,空間復用技術往往和空時編碼結合使用。當信道處于理想狀態(tài)或信道間相關性小時,發(fā)射端采用空間復用的發(fā)射方案,例如密集城區(qū)、室內(nèi)覆蓋等場景;當信道間相關性大時,采用空時編碼的發(fā)射方案,例如市郊、農(nóng)村地區(qū)。這也是3GPP在FDD系統(tǒng)中推薦的方式。
波束成型技術在能夠獲取信道狀態(tài)信息時,可以實現(xiàn)較好的信號增益及干擾抑制,因此比較適合TDD系統(tǒng)。
依據(jù)文獻[4],波束成型技術不適合密集城區(qū)、室內(nèi)覆蓋等環(huán)境,由于反射的原因,一方面接收端會收到太多路徑的信號,導致相位疊加的效果不佳;另一方面,大量的多徑信號會導致DOA信息估算困難。
3 二重接收分集技術的數(shù)據(jù)速率提升作用
3G(WCDMA)室內(nèi)空間二重分集接收的實測數(shù)據(jù)速率,也可說明多天線作用。室內(nèi)分布空間二重分集接收如圖4所示。
從表1可看出室內(nèi)覆蓋,二重分集接收速率提升2倍以上。
相關的規(guī)劃設計人員應該思考在大樓內(nèi)建3G基站,該花的錢,如基站主設備、物業(yè)、管道、基房、配套電源及空調(diào)等等加起來恐怕不會少于10萬元,但僅僅缺少一路主饋線(200 m 0.6萬元)不能用于分集(注意,原2天線1~2之間8 m沒有分集),現(xiàn)改為分集,使得系統(tǒng)數(shù)據(jù)容量翻倍。
4 不強不弱的均勻信號覆蓋對數(shù)據(jù)速率的影響
在3G/4G技術中,MIMO技術理論上為數(shù)據(jù)實現(xiàn)高階調(diào)制,但是在實際覆蓋區(qū)內(nèi)信號太強或太弱都不可能實現(xiàn)數(shù)據(jù)高階調(diào)制,只有不強不弱的均勻信號才能采用數(shù)據(jù)高階調(diào)制,從而得到數(shù)據(jù)速率的提升。
4.1 泰爾實驗室實測數(shù)據(jù)[5]
泰爾實驗室實測WLAN(OFDM)數(shù)據(jù)速率與場強關系見表2。
4.2 A8 Super Wi-Fi設備性能
京信公司無線傳輸與接入事業(yè)部提供的A8 Super Wi-Fi設備性能見表3。
實際工程為了90%無線覆蓋區(qū)可接入系統(tǒng),應有8dB陰影衰落儲備,因此其覆蓋電平對應數(shù)據(jù)速率應如表3所示。
4.3 結論
從表2和表3可看出當接收機輸入電平為-82dBm時,數(shù)據(jù)速率僅為6 Mbit/s,當接收機輸入電平為-65dBm時,數(shù)據(jù)速率達到54 Mbit/s,數(shù)據(jù)速率提升9倍,說明未來LTE基站邊界電平應取-75dBm,而不是2G時代的-85dBm。
5 未來MIMO天線建設模式
將可能有2種天線建設模式:即2G/3G時代的宏基站天線建設模式和分布式天線建設模式。
5.1 宏基站天線建設模式
宏基站天線建設模式如圖5所示,將MIMO天線放在3扇區(qū)中心的30 m高塔上。圖6示出的是宏基站覆蓋信號電平分布示意圖。
5.2 分布式天線建設模式
圖7示出的是文獻[3]給出的建設模式。圖7中1+6個近遠端覆蓋范圍等于1個宏基站覆蓋范圍。覆蓋區(qū)內(nèi)采取小功率、多天線的模式進行覆蓋。天線掛高不宜過高(8m左右);室外天線口功率為15~30dBm;市區(qū)天線覆蓋半徑在150 m以內(nèi)。
無線區(qū)域中心地理位置位于片區(qū)中心,射頻拉遠遠端機以無線區(qū)域中心為圓心向各個方向拉遠覆蓋。
比較圖6和圖8可以發(fā)現(xiàn):采用分布式天線建設模式可以得到不強不弱的信號覆蓋,依據(jù)文獻[3]和[5],數(shù)據(jù)速率將提升3倍以上,因此,MIMO應采用分布式天線建設模式。采用當前3G的宏基站天線建設模式時,最大問題是覆蓋區(qū)內(nèi)信號電平分布極不均勻,信號功率按距離四次方衰減,覆蓋區(qū)內(nèi)有一半?yún)^(qū)域(信號電平為-75~-85dBm)不能提供高速率數(shù)據(jù),此時需大量的中繼拉遠設備(無線或有線光纖拉遠設備)來覆蓋信號陰影區(qū),才能保證95%區(qū)域信號電平達到-75dBm以上,否則會回到2G時代只能提供低速率數(shù)據(jù)。
6 當前密集城區(qū)使用智能天線問題討論
上文提到MIMO技術有波束成型和分集,它們最大區(qū)別是前者的直列陣子相關性很強,直列陣子之間距離在0.5個波長之內(nèi)。后者直列陣子相關性很差,陣子之間距離在10個波長之上稱為空間分集或用交叉極化天線來達到分集效果。那么當前TD-SCDMA在密集城區(qū)使用標準的垂直極化智能天線效果如何,其實早就發(fā)現(xiàn)問題,實際還不如將垂直極化天線陣(8列垂直極化天線陣)換成交叉極化天線陣(4×2交叉極化天線陣)。此時智能天線作用被弱化,分集作用加強,這就是TD-SCDMA有8通道分集,其中4通道+45°與另外的4通道-45°實現(xiàn)交叉極化二重分集。
建議對于密集城區(qū),每個扇區(qū)采用四重分集(4×4 MIMO天線)。
可將當前的2 W 8通道,減為10 W 4通道,用交叉極化分集和空間分集聯(lián)合使用,實現(xiàn)4通道分集,獲得增益6dB。這樣取消3扇區(qū)基站共24(3×8)個塔放被, 將27(3×9)根射頻饋線減為12(3×4)根,81(3×3×9)個防水接頭減為12(3×4)個。對于市郊、農(nóng)村地區(qū),多徑分量少,各空間信道之間的相關性較大,因此可用垂直極化6(或4)列智能天線,不建議使用交叉極化智能天線。
評論