新聞中心

EEPW首頁 > 消費電子 > 設(shè)計應(yīng)用 > 極點跟隨的LDO穩(wěn)壓器頻率補償方法

極點跟隨的LDO穩(wěn)壓器頻率補償方法

作者: 時間:2017-06-08 來源:網(wǎng)絡(luò) 收藏
  1 引 言

  便攜電子設(shè)備無論是由蓄電池組,還是交流市電經(jīng)過整流后(或交流適配器)供電,工作過程中,電源電壓都存在變化。例如單體鋰離子電池充足電時的電壓為4.2 V,放電后的電壓為2.3 V,變化范圍很大。而各種整流器的輸出電壓不僅受市電電壓變化的影響,還受負(fù)載變化的影響。因而近年來,低壓差線性(LowDropout Linear Regulator)以其低成本,高電池利用率,潔凈的輸出電壓等特點,被廣泛應(yīng)用于移動電話、掌上電腦等消費類電子產(chǎn)品,以及便攜式醫(yī)療設(shè)備和測試儀器中。

  LDO|0">的頻率,不僅直接決定了頻率穩(wěn)定性,而且對LD0的性能參數(shù),尤其是瞬態(tài)響應(yīng)速度,有很大的影響。此外,隨著當(dāng)前半導(dǎo)體集成電路工藝的發(fā)展,越來越多的功能電路能夠被集成于單一芯片中,而現(xiàn)有的穩(wěn)壓器頻率補償技術(shù),對芯片上頻率補償電容的需要,大大阻礙了穩(wěn)壓器芯片集成度的提高和與其他功能電路的系統(tǒng)集成。

  本文對LDO穩(wěn)壓器的頻率穩(wěn)定問題,和現(xiàn)有的頻率技術(shù)進(jìn)行了理論分析。在此基礎(chǔ)上,提出了一種新型的頻率補償方法,并給出了電路實現(xiàn)途徑。通過一個采用TSMC0.18 μm混合信號半導(dǎo)體工藝,最大輸出電流為100 mA的LDO穩(wěn)壓器設(shè)計,對該方法做出了進(jìn)一步的說明。最后,結(jié)合LDO穩(wěn)壓器的HSpice仿真結(jié)果,對本文提出的頻率補償方法的效果進(jìn)行了討論。

  2 LDO穩(wěn)壓器頻率補償

  LDO穩(wěn)壓器的典型結(jié)構(gòu),如圖1所示。圖1中,Vref為具有良好溫度特性的電壓參考信號,Vin為不穩(wěn)定的輸入電壓信號,Vo為輸出電壓信號。LDO穩(wěn)壓器利用由壓差放大器、電壓緩沖器、電壓調(diào)整管Mpass和反饋網(wǎng)絡(luò)構(gòu)成的負(fù)反饋環(huán)路,維持Vo穩(wěn)定。

本文引用地址:http://butianyuan.cn/article/201706/351631.htm  當(dāng)環(huán)路對一定頻率的信號的相移達(dá)到-180°時,負(fù)反饋成為了正反饋,如果環(huán)路增益T仍大于單位增益,環(huán)路將產(chǎn)生自激振蕩,失去穩(wěn)定Vo的作用,故需要頻率,來保證在相移達(dá)到-180°之前,T已衰減到單位增益以下。在單位環(huán)路增益頻率fu處,環(huán)路相移與180°的和,被稱為相位裕度θ。在θ與閉環(huán)增益Ac1間存在以下關(guān)系:

  由式(1)可以看到,若相位裕度小于60°,則∣Ad∣大于1/β,即發(fā)生過沖。過沖會導(dǎo)致LDO穩(wěn)壓器的階躍響應(yīng)呈現(xiàn)欠阻尼振蕩(振鈴)。因而相位裕度不僅是考察頻率穩(wěn)定性的重要參數(shù),而且對瞬態(tài)響應(yīng)也有很大影響。

  圖1中存在兩個低頻極點,分別為位于電壓緩沖器輸出端的極點P1,和LDO穩(wěn)壓器輸出端的極點P2。P1與P2的值由電壓緩沖器的輸出等效電阻Ro1,Mpass的柵、源極電容Cgs,LDO穩(wěn)壓器輸出端的等效電阻Ro2和外接電容Co決定:

  為保證LDO穩(wěn)壓器的頻率穩(wěn)定性和足夠的相位裕度,P1與P2的間距(P1/P2)應(yīng)足夠大。但由式(3),P2隨著LDO穩(wěn)壓器的輸出電流的增大,逐漸向高頻移動,使P1和P2的間距縮小,造成頻率穩(wěn)定性變差。

  傳統(tǒng)LDO穩(wěn)壓器的頻率補償方法,如圖1所示,利用了輸出端電容Co及其等效串聯(lián)電阻Resr,產(chǎn)生一個左半平面(LHP)零點Z1:

  若Resr的取值使Z1與P1足夠接近,并相互抵消,則在LDO穩(wěn)壓器的通帶內(nèi)只有一個極點P2,環(huán)路相移不會超過-180°。但是,Resr會增加Vo在瞬態(tài)過程中的變化幅度,降低對Vin中噪聲的抑制,且對Resr取值的要求,限制了Co可選擇的類型,增大了使用難度和系統(tǒng)成本。此外,Resr的值還受到環(huán)境溫度、電壓和頻率的影響,所以頻率穩(wěn)定性不能得到可靠的保障。

  由于以上原因,當(dāng)前的LDO穩(wěn)壓器,多采用內(nèi)部頻率補償。一類內(nèi)部頻率補償技術(shù)借鑒了傳統(tǒng)LDO穩(wěn)壓器的零、極點抵消方法,并利用前饋技術(shù),或芯片內(nèi)部的RC網(wǎng)絡(luò)和電壓控制電流源,產(chǎn)生所需的零點。但是,要做到芯片內(nèi)產(chǎn)生的零點與相應(yīng)極點的完全匹配,是非常困難的。而未能相互抵消的零點和極點,會成為LDO穩(wěn)壓器通帶內(nèi)的零、極點對(doublet),造成Vo建立時間的增加。另一類廣泛使用的內(nèi)部頻率補償為米勒頻率補償。米勒補償具有極點分離的特性,即通過跨接在Mpass柵極和漏極的米勒電容Cm,將P1推向低頻,P2推向高頻。米勒補償后,P1與P2由式(2)、式(3)變?yōu)椋?

  其中,gm為Mpass的跨導(dǎo)。

  由式(5),欲使P1遠(yuǎn)小于P2,則Cm會很大,電路內(nèi)部對其充放電的過程造成Vo的壓擺時間tsr變長。因Co很大,由式(6),P2處于低頻,限制了增益帶寬GBW。米勒補償對tsr和GBW的影響,直接增大了LDO穩(wěn)壓器的環(huán)路延時td(參看式(7))。雖然通過嵌套的米勒頻率補償方法或電容倍增電路,能夠減小Cm,但未能根除Cm對LDO穩(wěn)壓器芯片的集成度的影響。

  針對以上問題,下節(jié)將給出一種能夠保證LDO穩(wěn)壓器的高速,且無需芯片上頻率補償電容的新型頻率補償方法。

  3 極點跟隨頻率補償

  LDO穩(wěn)壓器空載時,由式(3),P2為0 Hz(實際上,此時,λ和IDMpass為Mpass的溝道調(diào)制系數(shù)和漏極電流),P1只需大于0 Hz,P1與P2的間距(P1/P2)就足以保證頻率穩(wěn)定性。隨著輸出電流的增大,P2向高頻移動,如果P1能夠跟隨P2的變化,則P1與P2的間距得到維持。極點跟隨的頻率補償,即是當(dāng)輸出電流變化時,通過使P1跟隨P2的變化,獲得頻率穩(wěn)定性的方法。

  一種使P1跟隨P2變化的電路實現(xiàn),可利用共集電極和共漏極電壓緩沖器的輸出電阻,分別與偏置電流和偏置電流的開方成反比的規(guī)律,根據(jù)輸出電流來動態(tài)地調(diào)整電壓緩沖器的偏置電流,使P1也受輸出電流控制。

  一個采用了極點跟隨頻率補償?shù)腖DO穩(wěn)壓器,如圖2所示。其中,完成頻率補償?shù)膭討B(tài)偏置電壓緩沖器,包括了由MOS晶體管MP3,MN4和運算放大器OPA組成的輸出電流監(jiān)測電路,由MN1~MN3和MP1~MP2組成的電流鏡電路,以及由電流源IB2,IB3和雙極晶體管Q3~Q6組成的電壓緩沖器。

  輸出電流監(jiān)測電路中的MP3與LDO穩(wěn)壓器的電壓調(diào)整管Mpass的源、柵極驅(qū)動電壓相等,且由于運放OPA輸入端“虛短”特性,MP3的漏極(OPA正向輸入端)電壓等于Mpass的漏極(OPA負(fù)向輸入端)電壓,故有:

  對照式(3)與式(13),可以看到,P1/P2獨立于Io,故圖2中的LDO穩(wěn)壓器獲得了在整個負(fù)載變化范圍內(nèi)的頻率穩(wěn)定性。

  4 仿真結(jié)果與討論

  采用TSMC 0.18 μm混合信號Spice模型,和高精度仿真工具HSpice,對圖2中的LDO穩(wěn)壓器進(jìn)行了設(shè)計與仿真驗證。在Co=1 μF,Io=100 mA的條件下,環(huán)路增益T的幅頻與相頻響應(yīng)的仿真結(jié)果如圖3所示,在單位環(huán)增益頻率內(nèi),幅頻特性與單極點系統(tǒng)相同,以-20 dB/dec的速度衰減,相位裕度大于80°。

  圖4為輸出電流Io在20 ns內(nèi)由0跳變?yōu)?00 mA時,LDO穩(wěn)壓器輸出電壓Vo的瞬態(tài)響應(yīng)。由圖4可以看到,Vo從空載到滿載的轉(zhuǎn)換時間約為0.5μs。如此良好的瞬態(tài)響應(yīng)是由于極點跟隨頻率補償具有以下優(yōu)點:極點P1對P2的跟隨,減小了P1的附加相移,增加了相位裕度,則由式(1),有利于減小過沖導(dǎo)致的輸出電壓振鈴現(xiàn)象;無需引入零點,因而避免了零、極點對造成的輸出電壓穩(wěn)定時間的增加;對帶寬沒有限制,且無需米勒頻率補償電容,則由式(7),有利于減小環(huán)路延時。此外,電壓緩沖器中的甲乙類推拉結(jié)構(gòu)和動態(tài)電流,對提高響應(yīng)速度也有很大幫助。

  最后需要說明的是,對輸出電壓Vo進(jìn)行的直流掃描結(jié)果表明,Vo在整個輸出電流范圍內(nèi)的變化較大,約為4 %。經(jīng)分析,主要由以下因素造成:圖2中的寬帶壓差放大器的非對稱結(jié)構(gòu)引入了較大的輸入失調(diào)電壓;雙極器件的基極電流,以及NPN型器件與PNP型器件參數(shù)(放大倍數(shù)等)的差異引入的誤差。通過改用對稱結(jié)構(gòu)的低失調(diào)壓差放大器,并將雙極器件替換為MOS器件,可提高LDO穩(wěn)壓器的精度。但是由于低失調(diào)壓差放大器引入的低頻極點,以及MOS器件的低跨導(dǎo)造成的P1的頻率降低,會減小相位裕度,所以應(yīng)避免在壓差放大器中采用電流鏡(引入鏡極點)或共源共柵(增加節(jié)點電阻)等結(jié)構(gòu),并適當(dāng)提高電壓緩沖器中器件的尺寸和偏置電流。

  5 結(jié)語

  本文提出的極點跟隨的頻率補償方法,提供了LDO穩(wěn)壓器良好的頻率穩(wěn)定性和瞬態(tài)響應(yīng),且無需芯片上頻率補償電路,因而不僅適用于高負(fù)載變化響應(yīng)速度的單芯片LDO穩(wěn)壓器,在集成電源管理和片上系統(tǒng)(SOC)方面,也有較好的應(yīng)用前景。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉