新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 電流中的同步整流是什么意思?同步整流的意義是什么?半波全波橋式整流電路特點(diǎn)都是什么?

電流中的同步整流是什么意思?同步整流的意義是什么?半波全波橋式整流電路特點(diǎn)都是什么?

作者: 時(shí)間:2017-10-11 來源:網(wǎng)絡(luò) 收藏

 同步整流工作原理:

  從同步整流原理圖中可以看出,整流管VT3和續(xù)流管VT2的驅(qū)動電壓從的副邊繞組取出,加在MOS管的柵G和漏D之間,如果在獨(dú)立的電路中MOS管這樣應(yīng)用不能完全開通,損耗很大,但用在同步整流時(shí)是可行的簡化方案。由于這兩個(gè)管子開關(guān)狀態(tài)互瑣,一個(gè)管子開,另一個(gè)管子關(guān),所以我們只簡要分析電感電流連續(xù)時(shí)的開通情況,我們知道MOS管具有體內(nèi)寄生的反并聯(lián),這樣電感電流連續(xù)應(yīng)用時(shí),MOS管在真正開通之前并聯(lián)的已經(jīng)開通,把源S和漏D相對柵的電平保持一致,加在GD之間的電壓等同于加在GS之間的電壓,這樣副邊繞組同銘端為正時(shí),整流管VT3的柵漏電壓為正,整流管零壓開通,當(dāng)副邊繞組為負(fù)時(shí),續(xù)流管VT2開通,濾波電感續(xù)流。柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。

本文引用地址:http://butianyuan.cn/article/201710/365324.htm

  同步整流是采用通態(tài)電阻極低的專用功率MOSFET,來取代整流以降低整流損耗的一項(xiàng)新技術(shù)。它能大大提高DC/DC變換器的效率并且不存在由肖特基勢壘電壓而造成的死區(qū)電壓。

  同步整流的基本電路結(jié)構(gòu):

  功率MOSFET屬于電壓控制型器件,它在導(dǎo)通時(shí)的伏安特性呈線性關(guān)系。用功率MOSFET做整流器時(shí),要求柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。

  為什么要應(yīng)用同步整流技術(shù):

  電子技術(shù)的發(fā)展,使得電路的工作電壓越來越低、電流越來越大。低電壓工作有利于降低電路的整體功率消耗,但也給電源設(shè)計(jì)提出了新的難題。

  開關(guān)電源的損耗主要由3部分組成:功率開關(guān)管的損耗,高頻變壓器的損耗,輸出端整流管的損耗。在低電壓、大電流輸出的情況下,整流二極管的導(dǎo)通壓降較高,輸出端整流管的損耗尤為突出??旎謴?fù)二極管(FRD)或超快恢復(fù)二極管(SRD)可達(dá)1.0~1.2V,即使采用低壓降的肖特基二極管(SBD),也會產(chǎn)生大約0.6V的壓降,這就導(dǎo)致整流損耗增大,電源效率降低。

  比如有些CPU用3.3V甚至1.8V或1.5V的供電電壓,所消耗的電流可達(dá)幾十安培。此時(shí)超快恢復(fù)二極管的整流損耗已接近甚至超過電源輸出功率的50%。即使采用肖特基二極管,整流管上的損耗也會達(dá)到(18%~40%)PO,占電源總損耗的60%以上。因此,傳統(tǒng)的二極管已無法滿足實(shí)現(xiàn)低電壓、大電流開關(guān)電源高效率及小體積的需要,成為制約DC/DC變換器提高效率的瓶頸。

  同步整流比之于傳統(tǒng)的肖特基整流技術(shù)可以這樣理解:

  這兩種整流管都可以看成一扇電流通過的門,電流只有通過了這扇門才能供負(fù)載使用。

  傳統(tǒng)的整流技術(shù)類似于一扇必須要通過有人大力推才能推開的門,故電流通過這扇門時(shí)每次都要巨大努力,出了一身汗,損耗自然也就不少了。

  而同步整流技術(shù)有點(diǎn)類似我們通過的較高檔場所的感應(yīng)門了:它看起來是關(guān)著的,但你走到它跟前需要通過的時(shí)候,它就自己開了,根本不用你自己費(fèi)大力去推,所以自然就沒有什么損耗了。

  通過上面這個(gè)類比,我們可以知道,同步整流技術(shù)就是大大減少了開關(guān)電源輸出端的整流損耗,從而提高轉(zhuǎn)換效率,降低電源本身發(fā)熱。

  能量再生與同步整流:

  在開關(guān)管V導(dǎo)通時(shí),變壓器接收的電能除了磁化電流外都將傳送到輸出端。而管V關(guān)躍的反激作用期間,導(dǎo)向二極管D2用反偏置故不可能有鉗位作用或能量泄放的回路。磁化能量將會產(chǎn)生較大的反壓加在開關(guān)管的集一射極之間。為了防止高反壓的產(chǎn)生,設(shè)置了“能量再生繞組”P2,由繞組P2經(jīng)過二極管D1,使存儲的能量反饋回直流電源Ui中。只要滿足Wp1=Wp2的關(guān)系,D1流過電流時(shí)Up2=Ui,則開關(guān)管V上承受的集一射極電壓為2Ui。

  為了避免在P1和P2繞組之間存在的漏電感過大,和因此而在開關(guān)管集電極上產(chǎn)生過高的電壓,一般采用初級繞組P1與能量再生繞組P2雙線并繞的方法。在這種配置中,二極管D1接在能量再生繞組如圖所示的位置是非常重要的。原因是雙線并繞引起的內(nèi)部雜散電容Cc是在開關(guān)管V的集電極與繞組P2和D1連接點(diǎn)之間的寄生電容。按照圖中的接法是有優(yōu)點(diǎn)的,如在開關(guān)管V導(dǎo)通時(shí),由于二極管D1,反向而隔開了集電極,沒有任何的電流在V瞬時(shí)導(dǎo)通時(shí)流進(jìn)電容Cc中(注意,繞組P1和P2的非同銘端同時(shí)變負(fù),而且Cc的兩端電壓不會改變)。但是在反激期間,Cc提供開關(guān)管V的鉗位作用,任何過電壓的趨勢都會引起Cc流過電流,而且經(jīng)過D1,反饋到電源線上。如果寄生電容不夠大,只靠P1、P2繞組磁耦合,鉗位電壓超值時(shí),常??梢栽?位置加外接電容補(bǔ)充以改善它的鉗位作用。然而,如果電容值過大時(shí),會使得輸出電壓線上有輸人電壓嘰紋波頻率調(diào)制的電壓分量,所以要小心地選用附加電容Cc的值。

  在開關(guān)管V導(dǎo)通時(shí),輸入電壓Ui加在(Lp+LLT)上,由于D2反偏置阻止C2的充電,所以Uc2≈0。當(dāng)開關(guān)管V關(guān)斷時(shí),由于反激作用,V的集電極電壓Uc快速上升,但由于碭此時(shí)受正偏壓而導(dǎo)通,使V電流被C2、R1分流,Uc電壓逐漸上升,即UD1電壓也是逐漸上升,而且鉗位在2Ui數(shù)值上。從而把Uc上升的尖峰電壓的頂部消去,如虛線所示的脈沖尖峰。

  在一個(gè)周期剩下的時(shí)間里,隨著R1放電電流的減小,C2上的電壓降會返回到原來值。多余的反激電能,被消耗在R1上。此鉗位電壓是自跟蹤的,在穩(wěn)態(tài)工作時(shí),因?yàn)镃2上的電壓會自動地調(diào)整,直到所有多余的反激電能消耗在R1上。如果在所有其他情況下,都要維持某一恒定鉗位電壓時(shí),則可以通過減小R1值或漏電感Lyp的值,來抑制鉗位電壓的升高趨勢。

  不能把鉗位電壓設(shè)計(jì)得太低,因?yàn)榉醇み^沖電壓也有有用的一面。在反激作用時(shí),它提供了一個(gè)附加強(qiáng)制電壓值來驅(qū)動電能進(jìn)入到次級電感。使變壓器次級的反激電流迅速增加。提高了變壓器的傳輸效率,同時(shí)也減小了電阻R)上的損耗。這對于低壓大電流輸出是很有意義的。

  半波,全波,及橋式的特點(diǎn):

  單相半波的特點(diǎn)如下:

  (1) 電路簡單,使用器件少。

  (2)無濾波電路時(shí),整流電壓的直流分量較小,Vo=0.45V2

 ?。?)整流電壓的脈動較大。

 ?。?)變壓器的利用率低。

  單相全波整流電路的特點(diǎn)如下:

 ?。?)使用的整流器件較半波整流時(shí)多一倍。

 ?。?)整流電壓脈動較小,比半波整流小一半。無濾波電路時(shí)的輸出電壓Vo=0.9V2。

 ?。?)變壓器的利用率比半波整流時(shí)高。

 ?。?)變壓器二次繞組需中心抽頭。

 ?。?)整流器件所承受的反向電壓較高。

  單相橋式整流電路的特點(diǎn)如下:

 ?。?)使用的整流器件較全波整流時(shí)多一倍。

 ?。?)整流電壓脈動與全波整流相同。

  (3)每個(gè)器件所承受的反向電壓為電源電壓峰值,即 。

  (4)變壓器利用率較全波整流電路高。



關(guān)鍵詞: 整流電路 變壓器 二極管

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉