新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 確定 GaN 產(chǎn)品可靠性的綜合方法

確定 GaN 產(chǎn)品可靠性的綜合方法

作者: 時間:2018-08-13 來源:網(wǎng)絡 收藏

TI正在設計基于原理的綜合質量保證計劃和相關的應用測試來提供可靠的解決方案。氮化鎵()的材料屬性可使電源開關具有令人興奮且具有突破性的全新特性—功率GaN。高電子遷移晶體管(HEMT)。HEMT是一種場效應晶體管(FET),會使導通電阻會低很多。它的開關頻率要比同等大小的硅功率晶體管要快。這些優(yōu)勢使得功率轉換的能效更高,并且能夠更加有效地使用空間。GaN可以安裝在硅基板上,這樣可充分利用硅制造能力,并實現(xiàn)更低的成本。然而,在使用新技術時,需要驗證這項技術的。這份白皮書的主題恰恰是GaN器件質量鑒定。

本文引用地址:http://www.butianyuan.cn/article/201808/386393.htm

簡介

由于有超過30年的經(jīng)驗,并且經(jīng)過不斷改進,這個行業(yè)理所當然地認為硅功率晶體管具有很高的穩(wěn)定性。這種長期的用戶體驗已經(jīng)形成了一整套成熟的質量鑒定法方法體系;在這個方法體系中,和質量由運行標準化測試進行認證。這些測試來源于故障模式理解、激勵能量和加速因子方面的深入研究,以及推測使用壽命、故障率和缺陷率的統(tǒng)計與數(shù)學框架的開發(fā)。由于數(shù)代硅產(chǎn)品可以在實際使用條件下,實現(xiàn)真正使用壽命內的正常運行,這個質量鑒定方法體系現(xiàn)在已經(jīng)被證明是有效且實用的。

然而,GaN晶體管是近期才被開發(fā)出來的器件。更加昂貴的碳化硅基板上的RF GaN HEMT已經(jīng)被廣泛應用于無線基站內,并且其已經(jīng)得到驗證[1]。雖然基于相似的基本原理,功率GaN HEMT在實現(xiàn)更高電壓處理方面增加了更多的特性。它植根于硅基板上,并且使用與硅制造兼容的材料來降低成本。此外,出于故障安全的原因,它需要是一個增強模式 (e-mode),或者是常關器件。

主要有三種架構:

1. 與一個e-mode Si FET共源共柵的耗盡模式 (d-mode) 絕緣柵極GaN HEMT;2. e-mode絕緣柵極GaN HEMT;3. P型e-mode結柵極GaN HEMT。這三款器件會由于自身的原因,以及硅FET的影響而具有不同的故障模式,問題是如何鑒定它們的質量?;诠璧臉藴寿|量鑒定方法是一個有價值且具有里程碑意義的質量和可靠性鑒定方法,但不清楚的是,在器件使用壽命、故障率和應用相關性方面它對于GaN晶體管的效用如何。

德州儀器 (TI) 是半導體技術方面的行業(yè)領導者,在將可靠的半導體產(chǎn)品推向市場方面具有長期的經(jīng)驗,其中包括鐵電隨機訪問存儲器 (FRAM) 等非硅材料技術。在通過GaN相關質量鑒定方法體系和應用相關測試,把可靠的GaN產(chǎn)品推向市場方面,我們具有很大的優(yōu)勢。

標準質量鑒定方法體系

在鑒定硅功率器件質量方面,有兩個標準化組織的質量鑒定方法體系得到廣泛使用:聯(lián)合電子設備工程委員會(JEDEC);和汽車電子協(xié)會(AEC)[2, 3, 4, 5]。這些標準指定了很多測試,其中可以分為三類:靜電放電 (ESD)、封裝和器件。

靜電放電要求是一項強制的操作標準,所以ESD標準不太可能會發(fā)生變化。封裝測試與那些針對硅芯片、已經(jīng)完成的測試相類似,需要找到導致故障的根本原因,以強調意外的故障機制。之前在硅芯片中使用的后端處理也同樣用于GaN,在這個背景下,由于封裝應力、結合表面相互作用等問題比較常見,所以這個相似性也就凸現(xiàn)出來。然而,這個器件類別是全新的,并因此具有特別的重要性。后面的段落檢查了標準硅芯片質量鑒定方法體系,并且描述了如何將這一方法體系應用于GaN。

對于硅芯片質量鑒定來說,標準應力下的運行時間為1000h,結溫至少為125°C。假定激活能量為0.7eV,指定溫度加速因子為78.6 [2]。這使得125°C結溫下的1000h運行時間所受應力等于Tj = 55°C情況下,9年運行時間內所受應力。器件在它們的最大運行電壓下進行質量鑒定。對于分立式功率FET,這通常選擇為最小擊穿電壓技術規(guī)格的80%。這意味著,在質量鑒定測試條件下,沒有內置的電壓加速;電壓加速只由溫度實現(xiàn)。由于Tj在55°C以上,通常情況下高于75°C,這一點會對功率器件產(chǎn)生巨大影響。

這個標準還指定了3個批次的產(chǎn)品,每個批次有77個部件,不應在應力下出現(xiàn)故障。231個部件中的零故障標準意味著批內缺陷允許百分比 (LTPD) 的值為1 [2]。這表示,你有9成的把握地宣稱,在推測的應力條件下,一個批次內有1%的部件是有缺陷的。換句話說,在Tj = 55°C的溫度條件下運行9年,在最大工作電壓上被偏置。最初地最大故障率 (FIT) 大約為50。Tj = 55°C下的FIT也是使用0.7eV的激活能量,從231個部件的零故障結果中得出。

然而,除了靜態(tài)測試,還有一個動態(tài)測試。它被非常寬泛地定義為“有可能在一個動態(tài)工作模式下運行的器件”[3]。由廠商對測試進行定義。由于很難指定一個與大范圍不斷發(fā)展的應用和技術相對應的測試,所以缺少指定測試。指定測試也許不能與實際使用環(huán)境適當關聯(lián),并且有可能產(chǎn)生錯誤故障,或者無法加快有效故障機制 [7]。

對于硅FET來說,已經(jīng)在很多年的實際使用過程中建立起來質量鑒定方法體系的可信度。與GaN等全新技術不同的是,器件廠商負責確定它們的動態(tài)測試可以預測實際使用的運行情況。因此,需要開發(fā)出應用相關的應力測試,可以在實際使用條件下驗證可靠性。

最后,需要注意的一點是,GaN無法耐受雪崩能量。也就是說,器件將在被擊穿時損壞。這是一個需要解決的問題,特別是對于功率因數(shù)校正 (PFC) 電路等高壓應用來說更是如此;在這些應用中,器件會受到有可能出現(xiàn)的過壓事件的影響,比如說電力線路上的閃電尖峰放電。

標準質量鑒定方法體系的適用性

JEDEC和AEC標準均基于健全完善的基本原理,不過技術上比較落后。雖然通過硅產(chǎn)品質量鑒定是一件有價值的、里程碑式的重大事件,但是用戶需要一個能夠在實際使用條件下,在所需的使用壽命內,比如說10年,以低故障率持續(xù)運行的產(chǎn)品。因此,推出FRAM、成比例CMOS、GaN等新技術的公司需要了解這些標準的基本原理。在JEDEC質量鑒定方法體系中,主要的促進要素是溫度。根據(jù)方程式eq.(1) 計算出加速因子 (AF),在這里EA是激活能量,而k是玻爾茲曼常數(shù)。

如果在應力溫度Tj = 125°C、使用溫度Tj = 55°C,并且激勵能量大約為0.7eV的情況下使用eq (1),得出的加速因子將為78.6。這也是Tj = 125°C情況下1000h應力大致相當于Tj = 55°C情況下使用10年的原因。在已經(jīng)發(fā)表的文獻中,GaN 的激勵能量 [8] 在1.05到2.5eV之間變化。這些寬范圍的值表現(xiàn)出世界上不同實驗室和公司內器件、工藝和材料間的差異。這個范圍能夠提供大幅變化的加速因子,比如EA = 1.05eV下的687到EA = 2.5eV下5百萬以上的值。因此,有必要確定與工藝和最終產(chǎn)品的器件架構有關的激勵能量。

將實際運行中的結溫考慮在內也很重要。由于其所具有的寬帶隙,相對于硅材料,GaN能夠在更高的溫度環(huán)境中運行。這一點對于電力電子產(chǎn)品很重要。表1是125°C應力溫度下的1000h硅技術規(guī)格與其它幾種情況下的比較。從表1中可以看出,如果需要105°C的結工作溫度,假定激活能量為0.7eV,非加速時間從9年減少為0.3年。通過將應力溫度增加到150°C(這是一個針對標準封裝的實際限值),有可能將這個時間增加到1.1年。在這個情況下,應力測試并不符合現(xiàn)場等效使用壽命,或者解算出大約50 FIT的最大FIT率條件。然而,它的確是一項可靠且高質量的里程碑式的測試方法。

代表10年使用時間的1000h應力測試需要一個值為87.6的加速因子,并且在1.37的激勵能量下實現(xiàn)。諸如參考文獻 [8] 中1.05eV的更低激勵能量將需要2.84倍的電壓加速,或者大約延長6到17周的持續(xù)時間。過多的電壓加速會導致不具代表性的故障模式,而持續(xù)時間擴展延長了新產(chǎn)品的開發(fā)時間。根據(jù)故障模式和封裝內可提供的加速的不同,也許無法實現(xiàn)能夠表示所需現(xiàn)場等效使用壽命的質量鑒定測試。使用壽命要求由晶圓級可靠性測試提供保證,并且由已封裝部件的擴展持續(xù)時間應力測試進行驗證。

表1:不同應力參數(shù)對可靠性和質量推測數(shù)據(jù)的影響

根據(jù)GaN的特定故障模式來設定故障標準很重要。一個特別的故障就是動態(tài)Rds導通電阻增加,也被稱為電流崩塌。這一故障由緩沖和頂層的負電荷陷獲所導致 [9, 10]。電荷會在施加高壓時被誘陷,并且不會在器件接通時立即耗散。

被陷獲的負電荷排斥來自通道層的電子,而Rds導通電阻會由于通道層內的電子數(shù)量的減少而增加(圖1)。隨后,Rds導通電阻隨著被陷獲電荷的耗散而恢復。這一影響降低了效率,并且會使得器件自發(fā)熱量過多,并且會過早地出現(xiàn)故障。

圖1:一個GaN器件的電路橫截面顯示被陷獲的電子如何通過減少通道層中的電子數(shù)量來增加Rds導通電阻。

此外,陷獲密度會隨著器件老化而增加,從而使得動態(tài)Rds導通電阻的影響更加嚴重。我們有專門的硬件來監(jiān)視應力測試過程中的動態(tài)Rds導通電阻,這使得我們能夠確保發(fā)布的產(chǎn)品沒有這方面的問題。

應用相關測試

雖然DC測試方法在對大量部件進行測試時相對簡單,它們也許不能預測GaN是否在實際應用中具有10年的使用壽命。硬開關應力不同于DC應力。硬開關功率轉換器具有電感開關變換,在這個期間,器件同時受到高電流和高壓的影響。由于FET通道需要漏電壓,Vds,下降前灌入整個電感器電流,并且對那個節(jié)點上的其它器件進行反向恢復放電,接通變換是一個應力最高的過程。它還需要在Vds下降時承載器件放電輸出和開關節(jié)點電容內的額外電流。由于FET通道在Vds較低,并且電感器電流為各自的電容器充電時關閉,所以關閉的應力相對較低。

器件應力由使用圖2中所示拓撲的升壓轉換器顯示。圖3中顯示的是初級側開關 (FET1) 上硬開關接通變換的仿真結果。輸入電壓為200V,而電感器電流為5A(負載電流大約為2.5A)。在這個情況下,當FET1關閉時,由于鉗制FET (FET2) 導電,它的漏電壓大約鉗制在400V。因此,當FET1接通時,它需要在Vds開始下降之前灌入整個電感器電流(區(qū)域A)。

圖2:一個簡單的升壓轉換器拓撲。

圖3:針對一個硬開關變換的接通轉換。

隨著漏電壓下降(區(qū)域B),F(xiàn)ET需要將開關節(jié)點上的電容器放電。這些電容器中的電荷來自鉗制FET、電路板引線和其它連接的組件。由于使用了GaN FET,沒有來自這個鉗位的反向恢復電流。V-I關系曲線(圖4)顯示出,在高Vds時,會汲取大量電流。在這個情況下,大約比電感器電流高6A。由于FET的漏電容通過通道放電,實際的FET通道電流更高。例如,值為50pF,轉換率為60V/ns的漏電容會增加額外的3A電流。

圖4:一個電感開關變換的V-I關系曲線顯示出漏極偏置電壓較高時會出現(xiàn)數(shù)量可觀的電流。FET漏電容的放電增加了額外的通道電流,例如,60V/ns的50pF電容值會增加3A電流。

硬開關期間,高Vds時充足的FET通道電流會導致熱載流子生成,正因如此,器件需要穩(wěn)健耐用。此外,大器件陣列會遇到不一致的開關,這有可能會使器件電流涌入最先接通的那一部分器件陣列,并且超過本地額定值。高dv/dt開關還會錯誤地將電容電流引入器件的某一區(qū)域,比如說端子。需要完成可靠性測試,特別是在需要確保器件在硬開關應用中的穩(wěn)健耐用性時更是如此,并且可靠開關安全工作區(qū) (SOA) 限定了器件的用戶使用條件。

為了驗證硬開關穩(wěn)健耐用性,TI已經(jīng)開發(fā)出一個基于簡單升壓轉換器的電感開關單元(圖5)。根據(jù)JEDEC建議 [7] 進行選型,即“取決于故障模式和所關心的機制,由于實際產(chǎn)品復雜度有可能會掩蓋固有的故障機制,所以試驗模型也許更受歡迎。”

圖5:針對電感開關應用測試的試驗模型。

當GaN FET關閉時,電感器電流通過一個二極管再次流至輸入端,這就免除了對負載電阻器的需要,并且能夠達到節(jié)能的目的。這個單元與處于連續(xù)電流模式下的電感器一同運行。由于目標是開關變換,通過使用短占空比,可以達到節(jié)能的目的。這個元件能夠改變施加的電壓、電流、頻率,以及器件所處環(huán)境的溫度。額外的漏電流(圖4)由二極管電容提供。

可以按照需要增加額外電容。這個元件還具有一個硬件,可以在開關變換的1微秒后測量器件的動態(tài)導通電阻 (dRds-on)。由于dRds-on會隨著應力而增加,從而導致導電損耗增加、效率降低,因此這個實時監(jiān)視功能是很有必要的。在一個產(chǎn)品中,不斷增加dRds-on將導致過多的器件自發(fā)熱和過熱故障。由于Rds-on性能下降會恢復,不太可能通過將應力停止,在“上拉或下拉點”上獲得這些數(shù)據(jù)。監(jiān)視這個關鍵GaN故障參數(shù)使我們能夠避免發(fā)布的產(chǎn)品出現(xiàn)這個問題。

除了電感開關測試,GaN多芯片模塊需要在系統(tǒng)中進行評估,并且在實際的產(chǎn)品使用條件下運行。這樣可以驗證與其它系統(tǒng)組件的交互作用,并且暴露出未知的故障機制。即使單個組件是可靠的,它們之間的交互作用也可能會在意料之外。例如,在一個共源共柵GaN器件中,通過GaN器件漏源電容的電荷耦合會使得硅共源共柵器件在關閉變換期間出現(xiàn)雪崩擊穿 [11]。

有必要專門來說一說雪崩擊穿的耐受性。目前,GaN HEMT并未顯現(xiàn)出雪崩能力。由于GaN本身是支持雪崩的,所以這也許會隨著技術成熟而得以改進 [12]。與此同時,我們正在設計具有足夠裕量的TI產(chǎn)品,來解決遇到的過壓情況。例如,在PFC應用的情況下,如果電力線被閃電擊中時, FET上的電壓有可能瞬時上升到高達700V。對于這個應用,將制造能夠至少耐受750V尖峰電壓的GaN器件。

結論

德州儀器 (TI)在硅產(chǎn)品質量鑒定方面擁有長期的專業(yè)知識積累,我們將這些專業(yè)知識應用于GaN的質量鑒定方面。這就需要重新學習基本原理,以理解硅質量鑒定過程的起源,以及根據(jù)GaN特定故障、激勵能量和加速因子來創(chuàng)建測試。它還涉及針對相關應用中GaN的質量鑒定,其方法是在一個特殊電感開關試驗模型中進行應力測試,并且在實際產(chǎn)品配置中運行部件。

如需進一步了解TI的GaN解決方案,敬請訪問:

http://www.ti.com.cn/tihome/cn/docs/homepage.tsp

參考文獻

1. S.Singhal等,“一個GaN工藝平臺的質量鑒定和可靠性”,CS MANTECH會議,第83頁,2007年

2. JEDEC標準JESD471,“集成電路的應力測試決定的質量鑒定,”2012年7月

3. JEDEC標準JESD22-A108D,“溫度、偏置和運行壽命”,2010年11月

4. AEC-Q100,修訂版本H,“針對集成電路,基于故障機制的應力測試質量鑒定,”2014年9月

5. AEC-Q100,修訂版本D1,“針對汽車應用中分立式半導體的基于故障機制的應力測試質量鑒定,”2013年9月

6. JEDEC標準JESD85,“計算以FIT為單位的故障率的方法,”2001年7月

7. JESD標準JESD94A,“使用以知識為基礎的測試方法體系來進行特定應用的質量鑒定,”2011年9月

8. E. Zanoni等,“基于AIGAN/GaN的HEMT故障物理學和可靠性:影響柵極邊緣和肖特基結的機制,”關于電子器件的IEEE學刊,v.60,n.10,p.3119,2013年

9. J. Joh, N. Tipirneni, S. Pendharkar, S. Krishnan, “高壓開關應用中GaN異結場效應晶體管內的電流崩塌”國際可靠性物理學研討會 (IRPS),p.6C.5.1,2014年

10. O. Hill等,“緩沖器結構對高壓AIGaN/GaN HFET的動態(tài)導通電阻的影響,”功率半導體器件和IC國際研討會,p.345,2012年

11. S. R. Bahl和M. D. Seeman,“GaN共源共柵器件中全新的電氣過應力和能量損耗機制,”應用電源電子會議 (APEC),T25,2015年

12. I. Kizilyalli等,“具有雪崩功能的高壓垂直GaN p-n二極管,”關于電子器件的IEEE學刊,v.60,n.10,p.3067,2013年



關鍵詞: GaN 可靠性 綜合方法

評論


相關推薦

技術專區(qū)

關閉