新聞中心

EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > SiC和GaN系統(tǒng)設(shè)計(jì)工程師不再迷茫

SiC和GaN系統(tǒng)設(shè)計(jì)工程師不再迷茫

作者:泰克科技公司 時(shí)間:2018-10-30 來(lái)源:電子產(chǎn)品世界 收藏

    MOSFET技術(shù)的出現(xiàn),正推動(dòng)著功率電子行業(yè)發(fā)生顛覆式變革。這些新材料把整個(gè)電源轉(zhuǎn)換系統(tǒng)的效率提高了多個(gè)百分點(diǎn),而這在幾年前是不可想象的。

本文引用地址:http://butianyuan.cn/article/201810/393600.htm

  在現(xiàn)實(shí)世界中,沒(méi)有理想的開關(guān)特性。但基于新材料、擁有超低開關(guān)損耗的多種寬禁帶器件正在出現(xiàn),既能實(shí)現(xiàn)低開關(guān)損耗,又能處理超高速率dv/dt轉(zhuǎn)換,并支持超快速開關(guān)頻率,使得這些新技術(shù)既成就了DC/DC轉(zhuǎn)換器設(shè)計(jì)工程師的美夢(mèng),但同時(shí)也變成了他們的惡夢(mèng)。

  比如一名設(shè)計(jì)工程師正在開發(fā)功率轉(zhuǎn)換應(yīng)用,如逆變器或馬達(dá)驅(qū)動(dòng)控制器,或者正在設(shè)計(jì)功率因數(shù)校正電路 (PFC),需要把電源效率提高到99%甚至接近極限。他們會(huì)面臨什么樣的挑戰(zhàn)呢?

  使用低損耗晶體管只是他們必須翻越的整座大山的第一步。全面隔離的柵極驅(qū)動(dòng)器電路必須能夠正確驅(qū)動(dòng)和控制功率等級(jí),這會(huì)產(chǎn)生多個(gè)必須解決的問(wèn)題,從隔離到電路保護(hù)技術(shù),來(lái)避免所謂“饋通”問(wèn)題的引起的潛在災(zāi)難。

  在設(shè)計(jì)高頻轉(zhuǎn)換器時(shí),大部分設(shè)計(jì)時(shí)間用在仿真和驗(yàn)證上,以確認(rèn)已經(jīng)考慮并解決所有可能的問(wèn)題。

  一個(gè)天才的PCB設(shè)計(jì)師可以在布線上做到完美,但寄生信號(hào)仍然存在,且潛伏在每個(gè)角落,這就夠設(shè)計(jì)團(tuán)隊(duì)忙的了,當(dāng)然在這個(gè)過(guò)程中他們可以對(duì)新器件封裝、新系統(tǒng)布線和新拓?fù)浞矫娣e累經(jīng)驗(yàn)。毋庸置疑,如果切換到新的器件是非常復(fù)雜。

  這種情況在功率系統(tǒng)設(shè)計(jì)項(xiàng)目中相當(dāng)常見。將PFC/電源市場(chǎng)與光伏逆變器市場(chǎng)關(guān)聯(lián)起來(lái),把xEV汽車市場(chǎng)與消費(fèi)無(wú)線充電應(yīng)用關(guān)聯(lián)起來(lái),這是將技術(shù)發(fā)揮最大化的共同期待愿望。

  當(dāng)然,這些不同應(yīng)用系統(tǒng)之間的要求差異很大。設(shè)計(jì)人員對(duì)半導(dǎo)體器件的電場(chǎng)強(qiáng)度、導(dǎo)通電阻或阻斷電壓要求,可能會(huì)迫使其轉(zhuǎn)入非常具體、非常窄的泳道。而不管是在250kHz下使用SiC 的20kW電動(dòng)汽車充電樁設(shè)計(jì)人員,還是開發(fā)6.78MHz基于GaN的無(wú)線功率設(shè)計(jì)的諧振拓?fù)湓O(shè)計(jì)人員,他們都面臨著許多共同的問(wèn)題。

  在這兩種情況下,設(shè)計(jì)人員都需要以高精度清楚地表征靜態(tài)損耗和開關(guān)損耗。他們都需要清楚地處理和管理散熱問(wèn)題,量化冷卻介質(zhì)。他們的桌子上可能都擺著一大本新一代變壓器、電感器和電容器產(chǎn)品目錄,而他們以前從來(lái)沒(méi)用過(guò)這類產(chǎn)品。當(dāng)面臨EMC驗(yàn)證時(shí),他們會(huì)非常擔(dān)心焊接式探頭接入線可能會(huì)變成迷你天線。

  他們還開始認(rèn)識(shí)到,他們過(guò)去使用的儀器及附件可能不足以滿足當(dāng)前測(cè)試需求。

  他們必需測(cè)試幾千伏的擊穿電壓,同時(shí)檢測(cè)低至飛安級(jí)的泄漏電流。電源、萬(wàn)用表、示波器,是否還能勝任完成任務(wù)呢?

  由于必須同時(shí)測(cè)量所有這些MOSFET Vgs和Vds及電流,在精確表征時(shí)延的前提下,他們還能使用四通道示波器和一些外部觸發(fā)信號(hào)技巧來(lái)實(shí)現(xiàn)同步嗎?他們應(yīng)該花多少時(shí)間對(duì)波形進(jìn)行后期處理并將它們?nèi)糠旁谝黄鹨孕纬蓪?duì)電路特性的判斷?他們是否有足夠的靈敏度,在舊示波器上進(jìn)行柵極閾值電壓測(cè)量,以及在屏幕上追蹤振蕩,它們是真實(shí)的還是來(lái)自探頭引線?

  SiC和GaN也不例外,設(shè)計(jì)人員幾乎全都遇到過(guò)多個(gè)痛點(diǎn)和測(cè)量挑戰(zhàn),包括:

  •    高dv/dt、高di/dt和高開關(guān)頻率會(huì)產(chǎn)生EMI相關(guān)的問(wèn)題

  •    在高共模電流的情況下測(cè)量低電壓

  •    高壓過(guò)沖

  •    PCB布線設(shè)計(jì)中的串?dāng)_和其他問(wèn)題

  •    確定來(lái)自測(cè)量系統(tǒng)的錯(cuò)誤百分比

  Vgs測(cè)量問(wèn)題

  在另一個(gè)領(lǐng)域設(shè)計(jì)如相臂或半橋拓?fù)浣Y(jié)構(gòu)中,設(shè)計(jì)人員竭力測(cè)量拓?fù)渲械腣gs,如圖1所示。

  圖1:典型的相臂或半橋拓?fù)浣Y(jié)構(gòu)。

  在這種結(jié)構(gòu)中,當(dāng)一個(gè)SiC MOSFET開啟時(shí),超高dv/dt包括互補(bǔ)MOSFET的門極到源極電壓(Vgs),如圖2所示。

  圖2:Vgs測(cè)量的相關(guān)挑戰(zhàn)示意圖。

  當(dāng)然,您不希望降低dv/dt,因?yàn)楦叩霓D(zhuǎn)換速率才能讓這些器件實(shí)現(xiàn)最低的開關(guān)損耗。

  因此,必須用不同的方式解決這個(gè)問(wèn)題,通過(guò)在柵極驅(qū)動(dòng)器側(cè)工作以主動(dòng)控制切換過(guò)程中兩級(jí)的柵極電阻。

  此外,資深的PCB設(shè)計(jì)人員必須確??偩€和連接通路實(shí)現(xiàn)最小的電感效應(yīng),以免對(duì)電感環(huán)路引起的電壓和過(guò)沖振鈴帶來(lái)太多影響。在實(shí)際電路中,必須同時(shí)測(cè)量高壓側(cè)和低壓側(cè)Vgs,來(lái)驗(yàn)證所有這些單元,以表征脈寬調(diào)制(PWM)延遲時(shí)間,最大限度地降低死區(qū)時(shí)間,提高性能。然后您必需測(cè)量電流及兩個(gè)Vds,以全面表征開關(guān)損耗。

  四通道示波器不足以勝任這一工作,典型的8位ADC沒(méi)有提供足夠的垂直分辨率。此外,現(xiàn)在已經(jīng)證實(shí),大多數(shù)實(shí)驗(yàn)室中常用的探頭也是不夠的,其中也包括性能較好的差分探頭,而傳統(tǒng)上一直認(rèn)為這些探頭足以在高壓側(cè)進(jìn)行浮動(dòng)測(cè)量。

  傳統(tǒng)差分探頭是基于與地連接的差分放大器。這種接地方式限制了共模電壓范圍,導(dǎo)致共模電壓頻率額定值降低,產(chǎn)生接地環(huán)路,并限制了共模抑制。

  幸運(yùn)的是,就像寬禁帶器件產(chǎn)生顛覆式變革一樣,電源效率測(cè)量解決方案也在發(fā)生顛覆式變革。

  新型測(cè)量解決方案

  這個(gè)領(lǐng)域中的典型測(cè)量系統(tǒng)基于示波器和差分探頭,差分探頭在被測(cè)器件(DUT)與示波器之間提供連接。示波器選型至關(guān)重要,包括適當(dāng)?shù)膸?、本底噪聲、垂直分辨率、通道?shù)量和應(yīng)用軟件。探頭選型也至關(guān)重要,因?yàn)樘筋^性能可能會(huì)成為測(cè)量系統(tǒng)的限制因素。

  在需要進(jìn)行差分測(cè)量時(shí),由于共模抑制比的限制、幅度特性下降、頻響及探頭輸入引線導(dǎo)致的寄生信號(hào)等限制,上述傳統(tǒng)差分探頭通常不能很好地表征實(shí)際信號(hào)。在測(cè)試SiC和GaN功率器件時(shí),因?yàn)镾iC和GaN功率器件的開關(guān)速度快,標(biāo)稱共模電壓高,這些限制影響會(huì)進(jìn)一步放大。

  圖3:IsoVu測(cè)量系統(tǒng)。

  由于捕獲這些信號(hào)的問(wèn)題源自接地需求,因此可行的解決方案應(yīng)該是不依賴接地的探頭技術(shù),由于不依賴接地,所以其或多或少不受高共模電壓的影響。泰克科技公司開發(fā)的IsoVu測(cè)量系統(tǒng)可以實(shí)現(xiàn)以上的測(cè)試需求,其完全通過(guò)光纖進(jìn)行操作。

  IsoVu測(cè)量系統(tǒng)是Vgs測(cè)量的一個(gè)飛躍,也是唯一同時(shí)擁有必須高帶寬、高共模電壓和高共模抑制比的解決方案,能夠?qū)崿F(xiàn)寬禁帶MOSFET的新應(yīng)用中所需的差分測(cè)量。IsoVu與DUT完全實(shí)現(xiàn)電信號(hào)隔離,采用光電傳感器,把輸入信號(hào)轉(zhuǎn)換成光調(diào)制,在電氣上把DUT與示波器隔開。

  傳感器頭連接到測(cè)試點(diǎn)上,全面實(shí)現(xiàn)電隔離,通過(guò)其中一條光纖供電。探頭尖直到連接點(diǎn)全程屏蔽,最大限度地降低寄生信號(hào)。探頭不僅為功率轉(zhuǎn)換測(cè)試提供了明顯的優(yōu)勢(shì),還特別適合嚴(yán)格的EMI和ESD測(cè)試要求。

  與電氣探頭要盡可能短不同,電纜長(zhǎng)度對(duì)基于光纖的測(cè)量系統(tǒng)并不是問(wèn)題。在DUT與示波器必須(或應(yīng)該)相距一定距離時(shí),遠(yuǎn)程測(cè)量功能會(huì)非常有用。

  圖4:泰克示波器。

  IsoVu系統(tǒng)適用于大多數(shù)泰克示波器,但最佳搭檔是與新型5系列MSO示波器的12位垂直分辨率結(jié)合使用,5系列示波器在一臺(tái)儀器中提供了最多8條模擬通道,同時(shí)還提供了高級(jí)功率分析軟件。憑借這種組合,設(shè)計(jì)人員終于可以利用寬禁帶材料為DC到DC功率轉(zhuǎn)換器提供的所有優(yōu)勢(shì),同時(shí)對(duì)三相功率電子、電源設(shè)計(jì)、汽車電子等也是明顯的進(jìn)步。

    作者:泰克科技公司,Andrea Vinci / Tom Neville



關(guān)鍵詞: SiC GaN

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉