ZLG深度解析人臉識別核心技術
隨著大數(shù)據(jù)時代的到來,“人臉”也將成為數(shù)據(jù)的一部分,人臉識別如何實現(xiàn)?本文將為大家從人臉檢測、人臉定位、人臉校準以及人臉對比等方面詳細闡述人臉識別的原理與實現(xiàn)方式。
本文引用地址:http://www.butianyuan.cn/article/201901/396553.htm隨著計算機技術以及光學成像技術的發(fā)展,集成了人工智能、機器學習、視頻圖像處理等技術的人臉識別技術也逐漸成熟。未來五年,我國人臉識別市場規(guī)模平均復合增長率將達到25%,到2021年人臉識別市場規(guī)模將達到51億元左右,具有巨大的市場需求與前景。
安防、金融是人臉識別切入細分行業(yè)較深的兩個領域,移動智能硬件終端成為人臉識別新的快速增長點。因此,這三大領域?qū)⑹侨四樧R別快速增長的最大驅(qū)動力。
2017年,我國安防行業(yè)總產(chǎn)值達到6200億,同比增長16.98%,維持強勁發(fā)展勢頭。從細分產(chǎn)業(yè)來看,視頻監(jiān)控是構(gòu)建安防系統(tǒng)中的核心,在中國的安防產(chǎn)業(yè)中所占市場份額最大。而人臉識別在視頻監(jiān)控領域具有相當?shù)膬?yōu)勢,應用前景廣闊。
市面上的人臉識別解決方案也越來越多,但在系統(tǒng)框架上基本大同小異,大體框架如下圖所示:
接下來對人臉識別算法各技術點逐一進行詳細介紹,包括人臉檢測、人臉定位、人臉校準、人臉比對、人臉反欺詐以及算法優(yōu)化等。
1.人臉檢測
人臉檢測算法繁多,我們采用由粗到精的高效方式,即先用計算量小的特征快速過濾大量非人臉窗口圖像,然后用復雜特征篩選人臉。這種方式能快速且高精度的檢測出正臉(人臉旋轉(zhuǎn)不超過45度)。該步驟旨在選取最佳候選框,減小非人臉區(qū)域的處理,從而減小后續(xù)人臉校準及比對的計算量。
以下為人臉檢測算法的初始化接口, 根據(jù)實際應用場景設置人臉的相關參數(shù),包括最小人臉尺寸、搜索步長、金字塔縮放系數(shù)等:
人臉檢測實測效果如下圖所示:
評論