新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 全面了解和分析開關穩(wěn)壓器噪聲

全面了解和分析開關穩(wěn)壓器噪聲

作者:Leo Liu 時間:2019-07-18 來源:電子產品世界 收藏
編者按:本文將介紹開關穩(wěn)壓器的幾種不同類型的固有噪聲:開關紋波、寬帶噪聲和高頻尖峰。本文還將討論和分析與輸入噪聲抑制相關的開關穩(wěn)壓器PSRR。設計低噪聲開關穩(wěn)壓器時,為了消除LDO后置穩(wěn)壓器以提高功率轉換器效率、減小解決方案尺寸并降低設計成本,全面了解開關穩(wěn)壓器噪聲非常重要。

簡介

本文引用地址:http://www.butianyuan.cn/article/201907/402817.htm

一般而言,與低壓差(LDO)穩(wěn)壓器輸出相比,人們認為傳統(tǒng)的輸出電壓很大。然而,LDO電壓會引起嚴重的額外熱問題,并使得電源設計更加復雜。全面認識很有必要,有助于設計低開關解決方案,使之產生與LDO穩(wěn)壓器相當的低噪聲性能。本文分析和評估的目標是采用電流模式控制的降壓穩(wěn)壓器,因為它在應用中最常用。信號分析是了解開關紋波噪聲、當前寬帶噪聲特性(及其來源)、開關引起的高頻尖峰噪聲的主要方法。本文將討論PSRR(電源抑制比,其對輸入噪聲抑制很重要)以及信號分析方法。

開關紋波噪聲

本部分依據基波和諧波理論介紹降壓轉換器輸出紋波計算公式。

根據開關穩(wěn)壓器拓撲結構和基本操作,紋波始終是開關穩(wěn)壓器中的主要噪聲,因為峰峰值電壓幅度一般為幾mV到幾十mV。它應被視為周期性且可預測的信號。如果以固定開關頻率工作,則在時域中通過示波器,或在頻域中通過傅立葉分解,很容易將其識別并進行測量。

1563418272944281.jpg

圖1.降壓穩(wěn)壓器拓撲

圖1所示為典型的降壓穩(wěn)壓器。兩個開關交替接通和斷開,因此SW節(jié)點電壓VSW是一個理想的方波,此特性進而傳遞到占空比和輸入電壓。VSW可以用下面的公式表示:

1563418514477053.jpg

其中:

VIN為輸入電壓。D為占空比;對于降壓穩(wěn)壓器,其等于VOUT/VIN。

VIN確定后,VSW基波和諧波成分僅取決于占空比。圖2顯示了與占空比相關的VSW基波和諧波幅度。當占空比接近一半時,紋波幅度以基波為主。

1563418296738518.jpg

圖2.降壓穩(wěn)壓器VSW幅度與占空比的關系

降壓穩(wěn)壓器輸出LC級傳遞函數如下:

1563418538148579.jpg

其中,L為輸出電感值,DCR為電感電阻值,CL為電感并聯(lián)電容值。

COUT為輸出容量值。ESL為電容串聯(lián)電感值。ESR為電容串聯(lián)電阻值。

因此,VOUT可表示如下:

2.2.jpg

為了簡化計算,我們假設輸出LC級為20 dB/十倍頻程,然后是與占空比相關的VOUT紋波基波和諧波幅度,如圖3所示。當占空比接近一半時,三次或奇數次諧波將高于偶數次諧波。由于LC抑制,較高的諧波將具有較低的幅度,并且與總紋波幅度相比,其比例非常小。同樣,基波幅度是開關穩(wěn)壓器輸出紋波中的主要成分。

1563418316871701.jpg

圖3.降壓穩(wěn)壓器VOUT紋波幅度與占空比的關系

對于降壓穩(wěn)壓器,基波幅度與輸入電壓、占空比、開關頻率和LC級有關;但是,所有這些參數都會影響應用要求,如效率和解決方案尺寸等。為了進一步降低紋波,建議增加后置濾波器。

寬帶噪聲

開關穩(wěn)壓器中的寬帶噪聲是輸出電壓上的隨機幅度噪聲。它可以用整個頻率范圍內的噪聲密度來表示,單位為V/

,或用V rms來表示,其與頻率范圍內的密度不可分。由于硅工藝和基準電壓源濾波器設計的限制,寬帶噪聲主要位于開關穩(wěn)壓器的10 Hz至1 MHz頻率范圍內,在低頻范圍內很難通過增加濾波器來將其降低。

典型降壓穩(wěn)壓器寬帶噪聲峰峰值幅度電壓約為100μV至1000μV,遠低于開關紋波噪聲。如果使用額外的濾波器來降低開關紋波噪聲,則寬帶噪聲可能成為開關穩(wěn)壓器輸出電壓的主要噪聲。圖4顯示了當沒有額外濾波器時,降壓穩(wěn)壓器輸出噪聲的主要來源是開關紋波。圖5顯示了當使用額外濾波器時,輸出噪聲的主要來源是寬帶噪聲。

1563418357802825.jpg

圖4.無額外濾波器的VOUT

1563418372248473.jpg

圖5.有額外濾波器的VOUT(使用1000倍前置放大器進行測量)

為了識別和分析開關穩(wěn)壓器輸出寬帶噪聲,必須獲得穩(wěn)壓器控制方案和模塊噪聲信息。例如,圖6顯示了典型的電流模式降壓穩(wěn)壓器控制方案和模塊噪聲源注入。

1563418386733498.jpg

圖6.典型電流模式降壓穩(wěn)壓器控制方案

對于獲得的控制環(huán)路傳遞函數和模塊噪聲特性信息,有兩種不同的噪聲:環(huán)路輸入噪聲和環(huán)內噪聲??刂骗h(huán)路帶寬內的環(huán)路輸入噪聲會傳輸到輸出,而環(huán)路帶寬之外的噪聲會被衰減。對于開關穩(wěn)壓器,設計低噪聲EA和基準電壓源至關重要,因為單位反饋增益會保持噪聲水平不變,而不是隨著輸出電壓電平增加而提高它。最大的挑戰(zhàn)是找出整個系統(tǒng)中最大的噪聲源,并在電路設計中降低該噪聲。ADP5014針對低噪聲技術進行了優(yōu)化,采用電流模式控制方案和一個簡單的LC外部濾波器,在10 Hz至1 MHz頻率范圍內實現(xiàn)了低于20μV rms的噪聲性能。ADP5014的輸出噪聲性能如圖7所示。

1563418405131196.jpg

圖7.采用額外LC濾波器的ADP5014輸出噪聲性能

高頻尖峰和振鈴

第三類噪聲是高頻尖峰和振鈴噪聲,因為輸出電壓是由開關穩(wěn)壓器導通或關斷瞬變產生的。考慮硅電路和PCB走線中的寄生電感和電容;對于降壓穩(wěn)壓器,快速電流瞬變將在SW節(jié)點處引起高頻電壓尖峰和振鈴。尖峰和振鈴噪聲會隨著電流負載的提高而提高。圖8顯示了降壓穩(wěn)壓器如何形成尖峰。根據開關穩(wěn)壓器的導通/關斷壓擺率,最高尖峰和振鈴頻率將在20 MHz至300 MHz范圍內,受寄生電感和電容影響,輸出LC濾波器在抑制方面可能不是非常有效。與上述關于傳導路徑的所有討論相比,最差的是來自SW和VIN節(jié)點的輻射噪聲,由于其頻率非常高,輸出電壓和其他模擬電路會受到影響。

1563418423842768.jpg

圖8.降壓穩(wěn)壓器高頻尖峰和振鈴噪聲

為了降低高頻尖峰和振鈴噪聲,建議采用有效方法實施應用和芯片設計。首先,在終端負載上應使用額外的LC濾波器或磁珠。通常,這會使輸出上的尖峰噪聲遠小于紋波噪聲,但會增加更高頻率的成分。其次,應屏蔽SW和輸入節(jié)點的噪聲源或讓其遠離輸出側及敏感模擬電路,并且屏蔽輸出電感。精心布局和布線對設計很重要。第三,優(yōu)化開關穩(wěn)壓器的導通/關斷壓擺率,并盡量減小開關穩(wěn)壓器的寄生電感和電阻,從而有效降低SW節(jié)點噪聲。 Silent Switcher?技術也有助于通過芯片設計降低VIN節(jié)點噪聲。

開關穩(wěn)壓器PSRR

PSRR反映開關穩(wěn)壓器抑制輸入電源噪聲傳輸到輸出的能力。本部分分析低頻范圍內的降壓穩(wěn)壓器PSRR性能。高頻噪聲影響輸出電壓主要是通過輻射路徑,而不是通過前面討論的傳導路徑。

1563418443656011.jpg

圖9.從輸入電壓到輸出的電流模式降壓小信號圖

根據圖9所示的降壓小信號圖,降壓PSRR可以表示如下:

1563418589406524.jpg

其中:

1563418605735511.jpg

Fm為斜率增益

Fg為控制輸入電壓

Rcs為電流檢測增益

Zo(s)為輸出電容和負載

Tv(s)為環(huán)路傳遞函數

1563418464285698.jpg

圖10.采用降壓小信號模式的PSRR計算結果

1563418479841063.jpg

圖11.SIMPLIS模式的PSRR仿真

將信號模式計算與仿真結果進行比較。小信號模式是有效的,與仿真結果一致。

開關穩(wěn)壓器的PSRR性能取決于低頻范圍內的環(huán)路增益性能。開關穩(wěn)壓器的固有LC濾波器可以抑制中頻范圍(100 Hz至10 MHz)內的輸入噪聲。此范圍內的抑制性能比LDO PSRR好得多。因此,開關穩(wěn)壓器具有理想的PSRR性能,因為其在低頻時具有高環(huán)路增益,而固有LC濾波器會影響中頻范圍。

結論

越來越多的模擬電路,如ADC/DAC、時鐘和PLL等,需要干凈的能提供高電流的電源。每個器件對不同頻率范圍內的電源噪聲都有不同的要求和規(guī)格。有必要全面了解不同類型的開關穩(wěn)壓器噪聲并認知電源噪聲要求,從而設計和實現(xiàn)高效率、低噪聲開關穩(wěn)壓器,以滿足大多數模擬電路電源的低噪聲規(guī)格。與LDO穩(wěn)壓器相比,這種低噪聲開關解決方案將有更高的功效比、更小的解決方案尺寸和更低的成本。

參考資料

Glenn Morita?!翱烧{節(jié)輸出低壓差穩(wěn)壓器的降噪網絡”?!赌M對話》,第48卷,2014年。

Glenn Morita。應用筆記AN-1120:低壓差(LDO)穩(wěn)壓器的噪聲源。公司,2011年

Matthew Felmlee。應用筆記AN-1066:低噪聲時鐘AD9523、AD9524和AD9523-1的電源考慮。公司,2017年

Rob Reeder。技術文章。“高速ADC的電源設計”,ADI公司,2012年

作者簡介

Leo Liu 于 2005 年加入ADI公司,在中國銷售團隊擔任現(xiàn)場應用工程師。2011年,他加入電源管理產品部門,擔任應用工程師,自此以后一直負責PMU產品應用。他畢業(yè)于浙江大學,2001年和2004年分別獲得電氣工程學士學位和碩士學位。聯(lián)系方式:leo.liu@analog.com。



評論


相關推薦

技術專區(qū)

關閉