新聞中心

EEPW首頁(yè) > 汽車電子 > 設(shè)計(jì)應(yīng)用 > 自動(dòng)駕駛汽車大規(guī)模落地所面臨的挑戰(zhàn)

自動(dòng)駕駛汽車大規(guī)模落地所面臨的挑戰(zhàn)

—— 自動(dòng)駕駛
作者:Amnon Shashua 教授 時(shí)間:2020-06-04 來(lái)源:電子產(chǎn)品世界 收藏

在今年1月的國(guó)際消費(fèi)電子展()上,Mobileye公布了一段未經(jīng)剪輯的時(shí)長(zhǎng)為25分鐘的路測(cè)視頻,展示了Mobileye自動(dòng)駕駛汽車在耶路撒冷喧囂街道上行駛的情景。我們發(fā)布這段視頻的首要目的是 提高自動(dòng)駕駛的透明度 ,即便我們也想展示Mobileye的非凡技術(shù),但比這更重要的是,我們想向世人展示自動(dòng)駕駛汽車是如何運(yùn)行的,因?yàn)橹挥羞@樣,自動(dòng)駕駛汽車才能贏得社會(huì)的信任。

本文引用地址:http://www.butianyuan.cn/article/202006/413893.htm

1591277456547832.png

英特爾公司高級(jí)副總裁、英特爾子公司Mobileye總裁兼首席執(zhí)行官

為了進(jìn)一步加深大家的理解,我想要再公布一段40分鐘的視頻,這段新的視頻同樣未經(jīng)剪輯,記錄了Mobileye的自動(dòng)駕駛汽車在耶路撒冷街道上連續(xù)行駛160英里期間的情景。我們選擇通過(guò)一架無(wú)人機(jī)來(lái)跟蹤拍攝這段駕駛,以便大家對(duì)駕駛環(huán)境有更形象的認(rèn)知,進(jìn)而更好地理解自動(dòng)駕駛汽車決策背后的邏輯。需要說(shuō)明的是,駕駛過(guò)程中唯一受到人工干預(yù)的是在約20分鐘左右,我們?yōu)闊o(wú)人機(jī)更換了電池。此外,我們還為視頻配備了旁白,以詳細(xì)介紹Mobileye的自動(dòng)駕駛技術(shù)是在何處發(fā)揮作用,以及是如何處理駕駛過(guò)程中遇到的各種復(fù)雜情況的。

image.png

這段視頻提供了個(gè)機(jī)會(huì)可以清楚地闡釋Mobileye自動(dòng)駕駛汽車的發(fā)展思考。據(jù)我們所知,Mobileye的方案是獨(dú)一無(wú)二的,在自動(dòng)駕駛行業(yè)的眾多廠商中也是名列前茅的。我們的目標(biāo)是 解決自動(dòng)駕駛汽車的規(guī)?;y題 ,而想要真正步入自動(dòng)駕駛汽車的美好未來(lái),也必須實(shí)現(xiàn)規(guī)?;?。我們認(rèn)為,自動(dòng)駕駛汽車會(huì)首先以 共享汽車 ,例如自動(dòng)駕駛班車的形式實(shí)現(xiàn),進(jìn)而再在消費(fèi)級(jí)自動(dòng)駕駛乘用車上落地。在我看來(lái),自動(dòng)駕駛汽車規(guī)?;媾R的挑戰(zhàn)主要集中在 成本、高精地圖的普及 以及 安全性 上,在此想指出的是, 安全性必須以非普遍認(rèn)知的方式來(lái)決定軟硬件的體系結(jié)構(gòu)。

image.png

早在2017年,我們就基于兩項(xiàng)觀察發(fā)布了我們對(duì)“安全”的定義。首先,我們需要在駕駛策略規(guī)劃之初就以正式的方式闡明“小心謹(jǐn)慎”的定義,并以此消除決策過(guò)程中因判斷失誤而導(dǎo)致的事故(例如因并道而引發(fā)的交通事故),而這最終將用以實(shí)現(xiàn)安全性與實(shí)用性之間的平衡。

image.png

Mobileye的責(zé)任敏感安全模型()主要圍繞駕駛員的實(shí)際操作展開,通過(guò)諸如“路權(quán)是被賦予的,而不是爭(zhēng)奪來(lái)的”這樣的概念來(lái)建立度量參數(shù),以便讓自動(dòng)駕駛汽車做出安全的決策。當(dāng)然,這些參數(shù)是我們與管理機(jī)構(gòu)和標(biāo)準(zhǔn)機(jī)構(gòu)聯(lián)合制定的。在這之后,模型在可供假設(shè)的范圍內(nèi)假定了最壞的情況,即其他道路使用者會(huì)做出的最糟糕的動(dòng)作是什么。這樣一來(lái),我們就不再需要對(duì)其他道路使用者的行為進(jìn)行預(yù)測(cè)了。的理論證明,如果自動(dòng)駕駛汽車遵循該理論所規(guī)定的假設(shè)和行為,那么自動(dòng)駕駛汽車的決策大腦就永遠(yuǎn)不會(huì)造成事故。也是從那時(shí)起,RSS在全球范圍內(nèi)得到了推廣。

image.png

英特爾資深首席工程師兼英特爾子公司Mobileye自動(dòng)駕駛汽車標(biāo)準(zhǔn)副總裁Jack Weast在2019年Mobileye投資者峰會(huì)上發(fā)表主題演講

在2019年末,電氣電子工程師協(xié)會(huì)()組建了一個(gè)新的工作組,并委派了英特爾公司資深首席工程師Jack Weast擔(dān)任該工作組的負(fù)責(zé)人,該工作組旨在開發(fā)用于自動(dòng)駕駛汽車決策的標(biāo)準(zhǔn) 2846 。該工作組的成員大致能夠代表整個(gè)自動(dòng)駕駛行業(yè)。

在我看來(lái),這一跡象是令人安心的,因?yàn)檫@表明我們可以通過(guò)全行業(yè)的合作打造一個(gè)關(guān)鍵里程碑,以此推動(dòng)全行業(yè)的進(jìn)步,進(jìn)而帶動(dòng)我們自身的發(fā)展。

我們發(fā)表的論文中的第二個(gè)觀察對(duì)我們的系統(tǒng)架構(gòu)產(chǎn)生了深遠(yuǎn)的影響。也就是,即便機(jī)器人駕駛員的決策過(guò)程參考了諸如RSS的安全模型,但我們?nèi)匀挥锌赡苊媾R一種情況,也就是 由感知系統(tǒng)故障而導(dǎo)致的交通事故。

感知系統(tǒng)通常由攝像頭、雷達(dá)和激光雷達(dá)構(gòu)成,并通過(guò)軟件將傳感器的原始數(shù)據(jù)轉(zhuǎn)換為“環(huán)境模型”,這其中尤其包括其他道路使用者的位置和速度。即使幾率極小,但有一種可能是感知系統(tǒng)會(huì)忽略掉道路使用者和無(wú)生命障礙物等在內(nèi)的相關(guān)物體的存在,或是錯(cuò)誤地計(jì)算其尺寸,從而引發(fā)事故。

為了更好地理解這個(gè)問(wèn)題,讓我們做一個(gè)“粗略的”計(jì)算。美國(guó)每年的累積駕車行駛里程約為3.2 萬(wàn)億公里,其中,導(dǎo)致人員受傷的事故約為600萬(wàn)起。假設(shè)平均駕駛速度為每小時(shí)16公里,那么 平均故障間隔時(shí)間() 為50,000小時(shí)。假設(shè)我們的自動(dòng)駕駛汽車的比人類的高10倍、100倍或1,000倍(請(qǐng)注意,我們已經(jīng)排除了“和人類一樣好”的這種可能,因?yàn)槲覀儽仨氉龅酶茫?,假設(shè)我們部署10萬(wàn)輛自動(dòng)駕駛汽車作為自動(dòng)駕駛班車進(jìn)行規(guī)?;涞兀ㄟ@一數(shù)字與網(wǎng)約車廠商提出的數(shù)字相符,以這一數(shù)字來(lái)支持幾十個(gè)城市的相關(guān)服務(wù)是合理的),假設(shè)每輛自動(dòng)駕駛班車每天行駛5個(gè)小時(shí),那么,如果MTBF設(shè)計(jì)提高10倍,大概每天會(huì)出一次交通事故;如果提高100倍,每周會(huì)出一次事故;如果提高1000倍,則是每個(gè)季度僅出一次事故。

從社會(huì)的角度來(lái)看,如果道路上行駛的所有汽車的MTBF都提高10倍,這將是一個(gè)巨大的成就;但從車隊(duì)經(jīng)營(yíng)者的角度來(lái)看,無(wú)論從經(jīng)濟(jì)還是從輿論上出發(fā),每天一次事故無(wú)疑是一個(gè)無(wú)法承受的結(jié)果。顯然,如果我們的目標(biāo)是自動(dòng)駕駛汽車的規(guī)?;涞兀敲聪孪蘧褪荕TBF必須提高1000倍。即便是這樣,每個(gè)季度出一次事故還是令人神經(jīng)緊張。

MTBF提高1000倍,相當(dāng)于安全行駛5000萬(wàn)小時(shí),大約行駛8億公里。即使是為了驗(yàn)證MTBF而收集這么大的數(shù)據(jù)量也是很麻煩的,更不用說(shuō)開發(fā)出能夠滿足這種MTBF的感知系統(tǒng)了。

以上就是我們首選系統(tǒng)架構(gòu)的背景。為了讓感知系統(tǒng)實(shí)現(xiàn)如此雄心勃勃的MTBF,就需要引入冗余 — 特別是系統(tǒng)冗余,而不是系統(tǒng)內(nèi)部的傳感器冗余。這就相當(dāng)于你隨身攜帶了一個(gè)iOS手機(jī),一個(gè)安卓手機(jī),并自問(wèn)它們同時(shí)崩潰的概率是多少?這個(gè)問(wèn)題的答案大概是每個(gè)設(shè)備自行崩潰概率的乘積。同樣,在自動(dòng)駕駛汽車領(lǐng)域,如果我們僅基于攝像頭來(lái)構(gòu)建完整的端到端自動(dòng)駕駛,然后使用雷達(dá)/激光雷達(dá)構(gòu)建完全獨(dú)立的功能,那么我們就擁有了兩個(gè)獨(dú)立的冗余子系統(tǒng)。這就像隨身攜帶兩個(gè)不同系統(tǒng)的智能手機(jī)一樣,兩個(gè)系統(tǒng)同時(shí)遇到感知失敗的可能性是非常小的。這與自動(dòng)駕駛汽車行業(yè)其他廠商專注于“傳感器融合的處理感知系統(tǒng)”的方式非常不同。

image.png

然而,與構(gòu)建一個(gè)同時(shí)融合所有傳感器數(shù)據(jù)的自動(dòng)駕駛汽車相比,構(gòu)建一個(gè) 純攝像頭的自動(dòng)駕駛汽車 要困難得多。眾所周知,攝像頭很難被利用,因?yàn)樗鼘?duì)深度(范圍)的訪問(wèn)是間接的,是建立在諸如透視、陰影、運(yùn)動(dòng)和幾何形狀這樣的線索之上的。在今年的上,我也詳細(xì)闡述了Mobileye是如何構(gòu)建 純攝像頭(Vision Only) 的自動(dòng)駕駛汽車系統(tǒng)的。

image.png

讓我們回到今天發(fā)布的視頻上,這段視頻很好地展示了我們Vision Only子系統(tǒng)的性能。在視頻中可以看到,車?yán)锛葲](méi)有雷達(dá)也沒(méi)有激光雷達(dá),實(shí)際上,這輛車由 8個(gè)遠(yuǎn)距攝像頭4個(gè)停車攝像頭 提供感知支持,這些攝像頭的信息被輸入到僅由兩個(gè)EyeQ?5芯片支持的計(jì)算系統(tǒng)中。此外,自動(dòng)駕駛汽車還需要平衡敏捷性與安全性,而這兩者的平衡則會(huì)通過(guò) RSS 來(lái)實(shí)現(xiàn)。眾所周知,耶路撒冷的街道極具挑戰(zhàn)性,因?yàn)槠渌缆肥褂谜咄浅W晕?,這也給自動(dòng)駕駛汽車的決策模型帶來(lái)了極大的挑戰(zhàn)。

image.png

未來(lái),我們還將繼續(xù)分享Mobileye關(guān)于推動(dòng)自動(dòng)駕駛汽車規(guī)?;涞氐倪M(jìn)展和觀點(diǎn),敬請(qǐng)期待。

image.png



關(guān)鍵詞: CES RSS IEEE MTBF

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉