新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > ADI電磁流量計模擬前端電路方案實測

ADI電磁流量計模擬前端電路方案實測

作者: 時間:2022-09-15 來源:電子產(chǎn)品世界 收藏

是20世紀(jì)50~60年代隨著電子技術(shù)的發(fā)展而興起的新型流量測量儀表,由于其無阻流件等特點,在測量領(lǐng)域得到廣泛應(yīng)用。持續(xù)的技術(shù)進步要求不斷提高解決方案的集成度,技術(shù)型授權(quán)代理商Excelpoint世健的工程師Nathan Xiao借助的放大器、模數(shù)轉(zhuǎn)換器,進行了可實現(xiàn)高分辨率、低噪聲的工業(yè)電路的實測。

本文引用地址:http://butianyuan.cn/article/202209/438216.htm

工作原理

電磁流量計的工作原理基于法拉第電磁感應(yīng)定律。根據(jù)法拉第定律,當(dāng)導(dǎo)電流體流經(jīng)傳感器的磁場時,電極之間就會產(chǎn)生與體積流量成正比的電動勢,其方向與流向和磁場垂直。電動勢幅度可表示為:E = kBDv

其中,V表示導(dǎo)電流體的運動速度;B表示磁場強度;D 為測量管的內(nèi)徑;E表示電極兩端測得的電壓;k為常數(shù)。B、D和k均為固定值,也可以進行校準(zhǔn),從而等式簡化為:E ∝ V。

圖1.png

圖1 電磁流量計工作原理

傳感器線圈勵磁頻率通常使用1/25、1/16、1/10、1/8、1/4、1/2 of 50Hz/60Hz工頻。

傳感器輸出特性

-   在250mA勵磁電流激勵下,傳感器靈敏度通常是150~200微伏每(米/秒)

-   常見流速測量范圍0.01米/秒~15米/秒,1500:1信號動態(tài)范圍

-   傳感器輸出為雙極性差分信號,從微伏到若干毫伏

-   輸出共模電壓從幾百毫伏到幾伏

-   需要放大數(shù)百倍到千倍來配合模數(shù)轉(zhuǎn)換器輸入范圍

-   電極輸出阻抗從幾十歐到幾十兆歐

圖2為DN50管徑、316不銹鋼電極在常溫水管道上產(chǎn)生的輸出信號,使用了恒流源激勵,信號中包含有280mV共模電壓和100mV的噪聲。紫色曲線對應(yīng)正電極,紅色曲線對應(yīng)負(fù)電極,粉色曲線是將正負(fù)電極相減的數(shù)學(xué)計算通道,最終的流量信息需要從該曲線中計算得到??梢钥吹捷^低的電平信號淹沒在較大的共模電壓之中,需要高性能的進行數(shù)據(jù)的提取,這也是電磁流量計設(shè)計的關(guān)鍵所在。

1663215041407777.png

圖2 電磁流量傳感器的輸出信號

傳統(tǒng)的處理方法為模擬式,前端采用高輸入阻抗的前級放大器應(yīng)對漏電流,后級電路經(jīng)過多階模擬帶通濾波器和采樣保持,最終送入ADC進行轉(zhuǎn)換。該方法經(jīng)過了積分電路和多級濾波,濾除掉了高頻信號,降低了ADC信號分析的難度,但同時也使得大部分傳感器信息在該階段丟失,無法監(jiān)控除流量外的其他屬性參數(shù),如空管檢測、液體中氣泡、污物等;另外由于經(jīng)過積分和多級濾波,大大降低了系統(tǒng)的響應(yīng)速度,在流速快速變化過程中將產(chǎn)生比較大的測量誤差,無法滿足像高速灌裝等對快速、精確流量監(jiān)控的需求。

采用過采樣方法則可大大簡化設(shè)計,模擬帶通濾波器和采樣保持電路也不再需要。采用AD8220+AD7172的解決方案,可大大提高流量計的測量響應(yīng)速度,同時保留更多的傳感器信息,在經(jīng)過軟件處理后將提供更多的流量屬性參數(shù)。

1663215060696607.png

圖3 采用AD8220和AD717x的過采樣架構(gòu)模擬前端

以下將詳細(xì)分析模擬前端的具體選擇要求。

模擬放大器選擇

放大器的共模抑制比和輸入阻抗將是兩個最為關(guān)鍵的參數(shù)。

共模抑制比

隨著被測液體在管道中的流動,液體電解質(zhì)與電極摩擦產(chǎn)生電勢,這就是所說的極化。如果兩個電極完全一致,電極上的電勢彼此相等,可以相互抵消。但在實際中極化不可能完全抵消,電壓通常在數(shù)百毫伏到2伏之間,前置放大器成為了抑制極化產(chǎn)生的共模電壓的關(guān)鍵。

1663215078589782.png

圖4 前置放大器的共模抑制

100dB共模抑制比可將0.3V共模衰減到3μV,作為直流失調(diào)出現(xiàn)在放大器輸出端,通過校準(zhǔn)予以消除。與此同時,共模電壓會受到液體質(zhì)量、溫度等其他因素影響,隨時間而變化,校準(zhǔn)效果也將受到影響。因此共模抑制比越高,對校準(zhǔn)后的影響就會越少,流量穩(wěn)定性也越好。AD8220放大器在DC到5kHz范圍內(nèi)具有出色的共模抑制比,如下表所示。

表1 AD8220共模抑制比

1663215100509533.png

儀表放大器放大倍數(shù)在流量計應(yīng)用中多為10倍,對于AD8220 B級,直流到60Hz共模抑制比為110dB,5kHz以下為90dB,能夠很好地將共模電壓和噪聲抑制到微伏水平。

1663215115943064.png

圖5 AD8220直流和交流共模抑制效應(yīng)

表2顯示了不同的CMRR對傳感器輸出信號的影響。

表2 共模抑制對實際流速的影響

表2 共模抑制對實際流速的影響.png

輸入阻抗

電磁流量傳感器的輸出阻抗通常在GΩ級。放大器的高輸入阻抗可防止傳感器輸出過載,避免信號幅度減小;同時輸入偏置電流也應(yīng)當(dāng)足夠低,這樣當(dāng)它流經(jīng)傳感器時,不會成為一個顯著的誤差源。AD8220的最大輸入偏置電流為10 pA,輸入阻抗為104GΩ,特別適合于電磁流量計傳感器的應(yīng)用。表3列出了不同輸入阻抗對10 GΩ 高輸出阻抗傳感器的影響。

表3 放大器輸入阻抗對流速的影響

表3 放大器輸入阻抗對流速的影響.png

模數(shù)轉(zhuǎn)換器選擇

過采樣方法由于在儀表放大器的后級去掉了濾波器及增益級,信號幅值非常微弱,僅有一小部分的ADC輸入范圍可以使用,就需要從這些有限的數(shù)據(jù)點獲得足夠多的模數(shù)轉(zhuǎn)換樣本,從而在處理過程中消除意外毛刺。同時由于勵磁方向的切換,大部分時間信號未達到穩(wěn)定狀態(tài),可供ADC采集流速樣本的時間在勵磁周期的最后10%期間,這就要求ADC有更高的數(shù)據(jù)采集速率。

圖6.png

圖6 流量信號采樣

過采樣架構(gòu)一般要求ADC 數(shù)據(jù)速率大于20 kSPS,而且越快越好。由于不存在模擬帶通濾波器,ADC的輸入端可以直接看到傳感器的原始輸出,這樣使得通過ADC信號分析傳感器工作狀態(tài)成為了可能。如傳統(tǒng)的外加硬件電路和程序,進行傳感器空管定時檢測功能,使用該電路后可實時進行空管的狀態(tài)分析,提高了產(chǎn)品的瞬時響應(yīng)能力。

AD7172-2提供低輸入噪聲和高采樣速度的完美組合,特別適合于電磁流量計應(yīng)用。采用2.5 V外部基準(zhǔn)電壓源時,AD7172-2的典型噪聲低至0.47μV p-p。這意味著,最終流量結(jié)果的刷新速率可以達到50 SPS,而不需要增加外部放大級。圖4顯示了采用AD7172-2 的過采樣前端電路的噪聲曲線。

圖7.png

圖7 采用AD8220和AD7172的過采樣架構(gòu)折合到輸入端噪聲

表4 模擬前端和ADC的噪聲預(yù)算

表4 模擬前端和ADC的噪聲預(yù)算.png

*數(shù)據(jù)來自一個FIR濾波器周期和一次瞬時流量計算。

前端放大器屏蔽抑制

電磁流量傳感器輸出信號十分微弱,為了防止外界噪聲侵入,信號電纜通常采用雙芯屏蔽線。在實際使用中,特別是分體式使用中,傳感器和轉(zhuǎn)換器相距較遠(yuǎn),為防止信號線與屏蔽層的分布電容造成信號衰減,內(nèi)層屏蔽也需要接上與信號線同電位、低阻抗源的屏蔽驅(qū)動,最大程度保留流量信號的完整性,如下圖中兩個OP07D的示例。

為了最大程度降低泄漏電流,在PCB走線中,也可參考示意圖中虛線部分,將緩沖電壓連接至輸入信號路徑周圍的未屏蔽走線區(qū)域,從而保護傳感器輸出信號。

1663215184610355.png

圖8 前端放大器和電磁流量傳感器之間實現(xiàn)接口

實際測試結(jié)果

下圖為采用了AD8220和AD7172的模擬前端電路,經(jīng)過采樣處理后在DN100管線上實際標(biāo)定的最終結(jié)果,性能優(yōu)于國標(biāo)0.2級指標(biāo)。

圖9-10 實際測試結(jié)果

電磁流量計模擬前端電路方案可以滿足較領(lǐng)先高端流量計的要求,在測量響應(yīng)速度上具有明顯優(yōu)勢,能節(jié)省成本、優(yōu)化功耗和面積,Excelpoint世健可以提供相關(guān)技術(shù)指導(dǎo)和支持。



關(guān)鍵詞: ADI 電磁流量計 模擬前端

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉