短溝道 MOS 晶體管中的漏電流成分
MOS 晶體管正在按比例縮小,以限度地提高集成電路內(nèi)的封裝密度。這導(dǎo)致氧化物厚度的減少,進(jìn)而降低了 MOS 器件的閾值電壓。在較低的閾值電壓下,漏電流變得很大并有助于功耗。這就是為什么了解 MOS 晶體管中各種類型的漏電流至關(guān)重要。
本文引用地址:http://butianyuan.cn/article/202305/446807.htmMOS 晶體管正在按比例縮小,以限度地提高集成電路內(nèi)的封裝密度。這導(dǎo)致氧化物厚度的減少,進(jìn)而降低了 MOS 器件的閾值電壓。在較低的閾值電壓下,漏電流變得很大并有助于功耗。這就是為什么了解 MOS 晶體管中各種類型的漏電流至關(guān)重要。
在我們嘗試了解各種漏電流成分之前,讓我們先回顧一下 MOS 晶體管的概念。這將幫助我們更好地了解該主題。
回顧 MOS 晶體管結(jié)構(gòu)
MOS 晶體管結(jié)構(gòu)由金屬、氧化物和半導(dǎo)體結(jié)構(gòu)(因此稱為 MOS)組成。
考慮一個 NMOS 晶體管,它具有 p 襯底和 n+ 擴(kuò)散阱作為漏極端子和源極端子。氧化物層由 SiO 2制成,并生長在漏極和源極之間的溝道上方。柵極端由n+摻雜的多晶硅或鋁制成。
圖 1. NMOS 晶體管的鳥瞰圖。所有圖片來自 SM Kang,Y. Leblebici,CMOS 數(shù)字集成電路, TMH,2003,第 3 章,第 83-93 頁
在無偏置條件下,漏極/源極和襯底界面處的 pn 結(jié)是反向偏置的。三極管的能帶圖如圖2所示。
圖 2. 無偏置 NMOS 晶體管的能帶圖
如您所見,金屬、氧化物和半導(dǎo)體的費(fèi)米能級自行對齊。由于氧化物-半導(dǎo)體界面處的電壓降,Si 能帶中存在彎曲。內(nèi)置電場的方向是從金屬到氧化物再到半導(dǎo)體,電壓降的方向與電場的方向相反。
這種電壓降是由于金屬和半導(dǎo)體之間的功函數(shù)差異而發(fā)生的(部分電壓降發(fā)生在氧化物上,其余電壓降發(fā)生在 Si-SiO 2 界面上)。功函數(shù)是電子從費(fèi)米能級逃逸到自由空間所需的能量。您可以在Jordan Edmunds 的這段視頻中了解有關(guān) MOS 晶體管能帶圖和能帶彎曲的更多信息。
積累
接下來,假設(shè)柵極具有負(fù)電壓,而漏極和襯底接地的源極。由于負(fù)電壓,襯底中的空穴(多數(shù)載流子)被吸引到表面。這種現(xiàn)象稱為積累?;逯械纳贁?shù)載流子(電子)被推回到基板深處。下面給出相應(yīng)的能帶圖。
圖 3.柵極端負(fù)電壓的 NMOS 晶體管的能帶圖
由于電場的方向是從半導(dǎo)體到氧化物再到金屬,因此能帶向相反方向彎曲。另外,請注意費(fèi)米能級的變化。
耗盡區(qū)和耗盡區(qū)
或者,考慮柵極電壓剛好大于零??昭ū慌懦饣氐揭r底中,通道中的任何移動電荷載流子都被耗盡。這種現(xiàn)象稱為耗盡,會產(chǎn)生比無偏條件下更寬的耗盡區(qū)。
圖 4. NMOS 中的耗盡區(qū)
圖 5. 圖 4 中 NMOS 耗盡區(qū)的相應(yīng)能帶圖
由于電場是從金屬到氧化物再到半導(dǎo)體,因此能帶向下彎曲。
地表反轉(zhuǎn)
如果進(jìn)一步提高柵極的正電壓,則襯底中的少數(shù)載流子(電子)被吸引到溝道表面。這種現(xiàn)象稱為表面反轉(zhuǎn),表面剛好反轉(zhuǎn)時的柵極電壓稱為閾值電壓 (Vth )。
圖 6. NMOS 晶體管的表面反轉(zhuǎn)
圖 7.圖 6 中 NMOS 晶體管的相應(yīng)能帶圖
電子在源極和漏極之間形成傳導(dǎo)通道。如果漏極電壓隨后從零電位增加,則漏極電流 (Id )開始在源極和漏極之間流動。能帶進(jìn)一步向下彎曲并在半導(dǎo)體-氧化物界面處彎曲。
這里,本征費(fèi)米能級小于 p 型襯底的費(fèi)米能級。這支持了這樣的觀點(diǎn),即在表面,半導(dǎo)體是 n 型的(在 n 型材料的能帶圖中,本征費(fèi)米能級的能級低于施主能級)。
評論