新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 如何設(shè)計(jì)電池充電速度快4倍的安全可穿戴設(shè)備

如何設(shè)計(jì)電池充電速度快4倍的安全可穿戴設(shè)備

作者:Brandon Hurst,現(xiàn)場(chǎng)應(yīng)用工程師 時(shí)間:2023-11-23 來源:電子產(chǎn)品世界 收藏
編者按:本文將介紹模擬真無線立體聲(TWS)耳機(jī)應(yīng)用電源架構(gòu)的參考設(shè)計(jì)。它能將應(yīng)用的快速充電速度提高近4倍,同時(shí)優(yōu)化解決方案尺寸和系統(tǒng)BOM成本。使用熱敏電阻和熱成像測(cè)量得出的測(cè)試結(jié)果顯示,與傳統(tǒng)解決方案相比溫度更低。該設(shè)計(jì)展示了采用單電感、多輸出(SIMO)架構(gòu)且具有自動(dòng)裕量跟蹤功能的解決方案所提供的眾多優(yōu)勢(shì)。


本文引用地址:http://www.butianyuan.cn/article/202311/453217.htm

引言

隨著革新的持續(xù)推進(jìn),對(duì)穩(wěn)健電源架構(gòu)的需求不斷增加。在過去十年中,我們看到可穿戴健康監(jiān)測(cè)設(shè)備大幅增長(zhǎng),這些設(shè)備的下一代可能會(huì)在相同的小尺寸解決方案中集成更多功能。通常要求支持Wi-Fi、藍(lán)牙?并具備生命體征監(jiān)測(cè)(VSM)功能。對(duì)更多功能的需求,要求系統(tǒng)級(jí)和IC級(jí)設(shè)計(jì)人員更明智地選擇電源架構(gòu)。

無線耳機(jī)的電源挑戰(zhàn)

真無線立體聲耳機(jī)應(yīng)用目前需要將多個(gè)獨(dú)立的穩(wěn)壓器放到一個(gè)小尺寸解決方案中——畢竟,整個(gè)系統(tǒng)需要放入我們的口袋中!

TWS耳機(jī)應(yīng)用的典型電源系統(tǒng)如圖1a所示。充電座和耳機(jī)之間的DC-DC轉(zhuǎn)換器用于將電壓從VSYS提升至5 V USB電平。這樣可以為耳機(jī)的線性充電器提供足夠的裕量,避免出現(xiàn)電壓下降的情況。然而,該解決方案有一個(gè)缺點(diǎn),那就是由于耳機(jī)線性充電FET上的壓差和損耗,效率損失很大。當(dāng)耳機(jī)電池電量較低時(shí),尤其明顯。低效率充電會(huì)增加發(fā)熱量,導(dǎo)致系統(tǒng)電池壽命縮短和產(chǎn)品可靠性降低。

在某些情況下(圖1b),增加電力線通信(PLC),并借助充電座側(cè)的降壓-升壓調(diào)節(jié)器跟蹤線性充電器的裕量,可以提高系統(tǒng)效率。

然而,可穿戴產(chǎn)品的解決方案尺寸非常寶貴。為可穿戴設(shè)備的外設(shè)供電的降壓輸出所需的PLC芯片和電感,會(huì)直接影響這兩種傳統(tǒng)解決方案的產(chǎn)品尺寸和成本。

更好的解決方案:SIMO架構(gòu)和自動(dòng)裕量跟蹤

SIMO電源管理IC (PMIC)提供了滿足緊湊設(shè)計(jì)要求所需的架構(gòu)和效率。電池供電的可穿戴應(yīng)用還能受益于一種稱為自動(dòng)裕量跟蹤的技術(shù),它可以充分減少電路上的壓降,同時(shí)提供優(yōu)化裕量來調(diào)節(jié)充電電流。這就減少了充電電路中的功率損耗和發(fā)熱量,而無需額外的元器件,可穿戴設(shè)備在充電時(shí)可以保持較低溫度,甚至可以更快速地充電。

1700714171375088.png

圖1a TWS耳機(jī)應(yīng)用的典型電源架構(gòu)圖

1700714224827899.png

圖1b 帶PLC的TWS耳機(jī)應(yīng)用的典型電源架構(gòu)圖

MAX77659是一款SIMO PMIC,旨在提高可穿戴消費(fèi)和醫(yī)療設(shè)備的效率,并縮減系統(tǒng)板上空間和BOM尺寸。該P(yáng)MIC具有三個(gè)使用同一電感的降壓-升壓輸出,效率高達(dá)90%。它還包含一個(gè)額外的低壓差(LDO)穩(wěn)壓器,適用于需要高電源電壓抑制比(PSRR)的敏感應(yīng)用,例如VSM。此外,SIMO架構(gòu)在效率方面具有內(nèi)在優(yōu)勢(shì),并且其靜態(tài)電流非常低,解決方案尺寸極小。

1700714407721680.png

圖2 針對(duì)典型鋰離子周期的自動(dòng)裕量跟蹤

1700714485775592.png

圖3 參考設(shè)計(jì)框圖,比較了TWS耳機(jī)的建議解決方案和傳統(tǒng)解決方案

MAX77659的自動(dòng)裕量跟蹤功能使用SIMO輸出之一來充分減少晶體管上的壓降,同時(shí)提供優(yōu)化裕量來調(diào)節(jié)充電電流。其結(jié)果是晶體管上的功率損耗和發(fā)熱量減少,所有這些都不需要額外的元器件。圖2顯示了對(duì)整個(gè)快速充電過程中的自動(dòng)裕量跟蹤。

MAX77659參考設(shè)計(jì)

圖3所示的參考設(shè)計(jì)將MAX77659 SIMO PMIC解決方案與典型的線性充電解決方案進(jìn)行了比較。MAX77659 SIMO PMIC具有自動(dòng)裕量跟蹤功能,因此可以省去傳統(tǒng)解決方案(圖3,充電座B)中使用的降壓-升壓穩(wěn)壓器(圖3,充電座A)。它提高了充電效率,延長(zhǎng)了整個(gè)系統(tǒng)的電池壽命,并且減小了解決方案尺寸,降低了BOM成本。

1700714438745140.png

圖4 MAXREFDES1323參考設(shè)計(jì)板

圖4顯示了MAX77659參考設(shè)計(jì)的完整PCB。該設(shè)計(jì)包括兩對(duì)充電座/耳機(jī)解決方案,其中一對(duì)采用MAX77659 SIMO PMIC設(shè)計(jì)(充電座/耳機(jī)A),另一對(duì)采用典型的線性充電器設(shè)計(jì)(充電座/耳機(jī)B),使用MAX77734線性充電器?;迳系陌粹o可切換A和B分支的充電,OLED顯示屏顯示耳機(jī)的MAX17260電量計(jì)測(cè)得的充電電流和溫度。屏幕還顯示充電器狀態(tài),以及充電器何時(shí)因過熱必須降低充電電流。

電池管理系統(tǒng)充電標(biāo)準(zhǔn)

日本電子和信息技術(shù)工業(yè)協(xié)會(huì)(JEITA)發(fā)布了與電池管理系統(tǒng)相關(guān)的標(biāo)準(zhǔn),這些標(biāo)準(zhǔn)提供了嚴(yán)格而穩(wěn)健的方法,通過減少系統(tǒng)和電池磨損來提高系統(tǒng)安全性和可靠性,為最終用戶提供保障。終端應(yīng)用通常利用集成的JEITA保護(hù)功能,在電池充電的恒流(CC)和恒壓(CV)階段降低充電電流和電壓水平。如果系統(tǒng)變得太熱,可以降低充電電流和電壓,以使電路降溫。對(duì)電流的這種限制可以保護(hù)最終用戶,使其不會(huì)感到不適,并保持系統(tǒng)的可靠性和使用壽命。遺憾的是,限制充電電流也意味著充電周期變慢。集成JEITA功能的需求代表了一種設(shè)計(jì)權(quán)衡,這給可穿戴設(shè)備設(shè)計(jì)帶來了壓力。長(zhǎng)時(shí)間接受高充電電流也能保持較好熱性能的解決方案可以緩解這種壓力。

性能比較

為了檢驗(yàn)傳統(tǒng)解決方案和建議解決方案的熱性能,我們?cè)?70 mA CHG_CC(正常CC電流)和75 mA JEITA_CC(高于JEITA_WARM溫度閾值的CC電流)下進(jìn)行了1分鐘充電測(cè)試。目標(biāo)是顯示這段時(shí)間內(nèi)的熱差異,并檢查兩種解決方案是否可以在不觸發(fā)JEITA保護(hù)的情況下保持較高充電速度。為了提供可重復(fù)性,并將溫升限制為僅IC所經(jīng)歷的溫升,我們使用了電池仿真器。該測(cè)試使用的熱閾值為45°C,比環(huán)境溫度高21°C。參考設(shè)計(jì)的PCB是6層板,銅厚度分別為0.0014英寸、0.0007英寸、0.0007英寸、0.0007英寸、0.0007英寸和0.0014英寸。測(cè)試條件如表1所示,結(jié)果如表2所示。

表1 JEITA充電測(cè)試條件

測(cè)試配置

CC

CC

270 mA

270 mA

JEITA CC

75 mA

75 mA

JEITA暖溫度

45?C

45?C

電池電壓

3.0 V

3.0 V

表2 JEITA充電測(cè)試結(jié)果


解決方案A

(MAX77659 SIMO PMIC)

解決方案B

(線性充電器)

時(shí)間

(s)

狀態(tài)

溫度

(°C)

充電電流

(mA)

狀態(tài)

溫度

(°C)

充電電流

(mA)

0

0

Off

關(guān)

24.3

24.3

270

270

Off

關(guān)

24.0

24.0

270

270

15

15

CC

CC

29.1

29.1

270

270

CC

CC

43.0

43.0

270

270

30

30

CC

CC

32.2

32.2

270

270

JEITA CC

JEITA CC

47.1

47.1

75

75

45

45

CC

CC

33.3

33.3

270

270

JEITA CC

JEITA CC

47.3

47.3

75

75

60

60

CC

CC

35.4

35.4

270

270

JEITA CC

JEITA CC

44.2

44.2

75

75

在測(cè)試過程中,MAX77659 SIMO解決方案在1分鐘內(nèi)升溫11.1°C,并且在前30秒后其升溫速度明顯減慢。所提出的解決方案在測(cè)試過程中的任何時(shí)候都沒有進(jìn)入JEITA模式。采用典型線性充電解決方案時(shí),器件在短短15秒內(nèi)升溫近20°C,并觸發(fā)JEITA保護(hù),在僅30秒內(nèi)就限制了充電電流。

熱成像結(jié)果

此外,為了在未啟用JEITA保護(hù)的情況下檢查熱行為,我們進(jìn)行了單獨(dú)的測(cè)試,并使用熱像儀來測(cè)量SIMO PMIC解決方案和線性充電器解決方案的溫度。參數(shù)與第一次測(cè)試相同,只不過禁用了JEITA保護(hù)。

1700714529262877.png

圖5 并排充電器解決方案的熱成像

在2分鐘的測(cè)試過程中,線性解決方案的溫度升至58.1°C,而SIMO PMIC僅升至37.5°C?;谶@些結(jié)果可知,與線性充電解決方案相比,SIMO解決方案能夠?qū)厣档图s72%。

結(jié)論

本文在模擬TWS耳塞應(yīng)用中,將MAX77659 SIMO PMIC與傳統(tǒng)線性充電解決方案進(jìn)行了比較,展示了自動(dòng)裕量跟蹤和開關(guān)充電器解決方案的優(yōu)勢(shì)。結(jié)果表明,SIMO PMIC解決方案在熱方面實(shí)現(xiàn)了巨大改進(jìn)(熱量減少72%),能夠安全地維持幾乎是傳統(tǒng)線性充電解決方案4倍的充電電流。這有助于系統(tǒng)快速充電,同時(shí)保持低溫和舒適性,從而解決可穿戴設(shè)備的關(guān)鍵難點(diǎn)。

MAX77659 SIMO PMIC為下一代可穿戴設(shè)備提供安全、可靠、舒適的充電解決方案,同時(shí)提高了效率,減少了必要的解決方案尺寸和系統(tǒng)BOM數(shù)量。如需了解更多信息,請(qǐng)?jiān)L問ADI公司全面的SIMO PMIC和電量計(jì)平臺(tái),查看適用于下一代可穿戴設(shè)備的出色低功耗解決方案。

關(guān)于作者

Brandon Hurst是一位現(xiàn)場(chǎng)應(yīng)用工程師,重點(diǎn)關(guān)注軟件和嵌入式系統(tǒng)。他專注于嵌入式系統(tǒng)以及電池充電和電量計(jì)量。他畢業(yè)于加州州立理工大學(xué),獲得電氣工程學(xué)士學(xué)位,并于2021年1月加入Maxim Integrated(現(xiàn)為ADI公司的一部分)。

(本文登于EEPW 2023年12期)



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉