新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 深入了解FET輸入放大器中的電流噪聲

深入了解FET輸入放大器中的電流噪聲

作者: 時(shí)間:2024-01-31 來源:亞德諾半導(dǎo)體 收藏

工程師和電路設(shè)計(jì)人員都深知會(huì)隨頻率增高而變大,但由于關(guān)于此領(lǐng)域的資料過少,或者制造商提供的信息不全,許多工程師很難了解其原因。

本文引用地址:http://butianyuan.cn/article/202401/455266.htm

許多半導(dǎo)體制造商的數(shù)據(jù)手冊(cè),包括ADI在內(nèi),都在規(guī)格表中給出了,一般是1 kHz頻率時(shí)的噪聲。但并非始終能夠指明參數(shù)從何而來。是通過測(cè)量得來?或者是理論推斷而來?有些制造商很明白地指出,他們是通過一個(gè)公式

圖片

即散粒噪聲公式得出這些數(shù)值的。一直以來,ADI都是采用這種方式提供大部分電流噪聲數(shù)值。但這些計(jì)算出的數(shù)值是否等于各在1 kHz時(shí)的噪聲值?

過去許多年,人們對(duì)于中電流噪聲與頻率的關(guān)系越來越感興趣。有些客戶和制造商假設(shè)FET輸入放大器的電流噪聲與雙極性輸入放大器的噪聲類似,例如,如圖1所示中的1/f或閃爍噪聲和平坦寬帶噪聲成分。對(duì)于FET輸入放大器,情況并非如此;如圖2所示,其噪聲呈現(xiàn)奇怪的噪聲形狀,人們對(duì)此不熟悉,且在許多仿真模型中,這些噪聲都被忽略。

圖片

圖1.雙極性輸入放大器AD8099的電流噪聲。

圖片

圖2.FET輸入放大器AD8065的電流噪聲。

測(cè)量設(shè)置是關(guān)鍵

在我們弄明白為何會(huì)如此之前,我們先快速查看一下測(cè)量設(shè)置。需要確定易于復(fù)制、可靠的測(cè)量方法,以便在不同器件中重復(fù)使用這種測(cè)量。

可能需要使用DC417B 單放大器評(píng)估板。待測(cè)器件(DUT)采用的電源必須具備低噪聲、低漂移特性。相比開關(guān)電源,選擇線性電源更合適,如此,電源引入的特性變化(例如開關(guān)偽像)不會(huì)不會(huì)影響測(cè)量結(jié)果。LT3045 和LT3094是具備超高PSRR和超低噪聲的正負(fù)極輸出的線性穩(wěn)壓器,可用于進(jìn)一步降低來自線性電源的紋波。通過單一電阻配置就可以使LT3045和LT3094實(shí)現(xiàn)高可到+15V,低可至-15V的輸出電壓。這兩種器件是理想的實(shí)驗(yàn)室電源,適用于低噪聲測(cè)量。

圖片

圖3.測(cè)量設(shè)置。

來自O(shè)hmite (HVC1206Z1008KET)的10 GΩ SMT電阻被用于將DUT同相引腳上的電流噪聲轉(zhuǎn)化為電壓噪聲。FET輸入型放大器的典型偏置電流約為1 pA,相當(dāng)于會(huì)產(chǎn)生0.57 fA/√Hz典型噪聲。

如果公式

圖片

正確的話。10 GΩ源極阻抗熱噪聲為

圖片

這為我們提供了測(cè)量電流的本底噪聲

圖片

這個(gè)值可以在后期處理中減去。但是,如果電阻中由熱噪聲產(chǎn)生的電流噪聲在DUT的電流噪聲中占主導(dǎo),則無法準(zhǔn)確測(cè)量。所以,至少需要電阻值達(dá)到10 GΩ,才能測(cè)量出噪聲。100 MΩ源極阻抗熱噪聲約為1.28 μV/√Hz (= 12.8 fA/√Hz),但這不足以區(qū)分DUT和電阻噪聲。此噪聲,如果不關(guān)聯(lián),會(huì)以和方根(RSS)形式相加。圖4和表1顯示了對(duì)兩個(gè)數(shù)值比的RSS影響。n:n增加了約41%,n:n/2增加了約12%,n:n/3增加了約5.5%,n:n/5增加了約2%。平均值足夠時(shí),我們可能能夠從中抽取10%(0.57 fA/√Hz和1.28 fA/√Hz RSS)。

圖片

圖4.基于兩個(gè)數(shù)值比的RSS增加。

圖片

表1.基于兩個(gè)數(shù)值比的RSS增加

為什么結(jié)果如此奇怪?

圖5顯示了使用 AD8065設(shè)置的噪聲電壓密度,AD8065是一款145 MHz FET輸入運(yùn)算放大器,具備2.1 pF共模輸入容抗。10 GΩ電阻熱噪聲為12.8 μV/√Hz,直至電路板的輸入電容和插座雜散電容滾降電壓噪聲。理想情況下,應(yīng)該在–20 dB/dec滾降,但曲線在約100 Hz時(shí)開始改變形狀,在約100 kHz走向平坦。這是怎么回事呢?直覺告訴我們,唯一能夠停止–20 dB/dec滾降和實(shí)現(xiàn)平坦的方法是提供一個(gè)+20 dB/dec斜坡。電流噪聲正是提供這個(gè)斜坡關(guān)鍵,它隨頻率增加而增高,具有+20 dB/dec斜率。

圖片

圖5.輸出參考電壓噪聲密度。

SR785動(dòng)態(tài)信號(hào)分析儀或FET儀器可用于測(cè)量輸出電壓噪聲;但是,低于7 nV/√Hz的本底噪聲的儀器會(huì)更合適。當(dāng)DUT滾降的輸出電壓噪聲接近20 nV/√Hz至30 nV/√Hz時(shí),我們希望分析儀本底噪聲增加到被測(cè)的噪聲量盡可能少。3倍比率僅增加約5.5%。噪聲域中最多可接受5%誤差(參見圖4)。

精妙之處在于反向計(jì)算

以這種方式測(cè)量的話,繪制電流噪聲所需的兩個(gè)主要參數(shù)可通過一次測(cè)量獲得。首先,我們獲取總輸入電容,即雜散電容和輸入電容的總和,反向計(jì)算滾降需要用到這個(gè)值。即使存在雜散電容,也可以通過反向計(jì)算得到它的值。輸入電容比10 GΩ電阻更具主導(dǎo)性??傋杩箤㈦娏髟肼曓D(zhuǎn)換成電壓噪聲。因此,掌握總輸入電容非常重要。其次,它顯示電流噪聲從何處開始占主導(dǎo)作用,即,從何處開始偏離–20 dB/dec斜坡。

我們來看看圖5中采用此數(shù)據(jù)的示例。3 dB滾降點(diǎn)對(duì)應(yīng)2.1 Hz,與輸入中的

圖片

電容對(duì)應(yīng)。從數(shù)據(jù)手冊(cè)可以看出,共模輸入電容只有約2.1 pF,這意味著存在約5.5 pF雜散電容。差分模式輸入電容被負(fù)反饋?zhàn)耘e,所以不會(huì)在低頻率下發(fā)揮作用。采用7.6 pF電容時(shí),電流噪聲的阻抗如圖6所示。

圖片

圖6.并聯(lián)的10 GΩ電阻和7.6 pF輸入電容的總阻抗幅度。

采用在AD8065(圖5)上測(cè)量的折合到輸出端(RTO)的電壓噪聲,除以阻抗vs頻率(圖6),可得出在RSS中合并的AD8065和10 GΩ電阻的等量電流噪聲(圖7)。

圖片

圖7.AD8065和10 GΩ電阻的RTI電流噪聲。

移除10 GΩ電流熱噪聲(約翰遜噪聲除以電阻值)之后,AD8065折合到輸入端的噪聲如圖8所示。低于10 Hz時(shí),噪聲嚴(yán)重失真,這是因?yàn)槲覀儑L試從1.28 fA/√Hz中剝離出0.5 fA/√Hz至0.6 fA/√Hz(在RSS比例中,為10%)的電流噪聲,其中只有100個(gè)平均值。在15 mHz至1.56 Hz之間,存在400條具有4 mHz帶寬的線。即256秒/平均值!100個(gè)平均值,每個(gè)256秒,總共25,600秒,稍稍超過7個(gè)小時(shí)。為何需要測(cè)量值低至15 mHz,為何需要花費(fèi)那么多時(shí)間?10 pF輸入電容和10 GΩ電阻會(huì)構(gòu)建一個(gè)1.6 Hz低通濾波器。低噪聲FET放大器具備大輸入電容,最高可達(dá)20 pF,0.8 Hz位置對(duì)應(yīng)3 dB點(diǎn)。為了正確測(cè)量3 dB點(diǎn),我們需要往前增加十倍頻率裕量的測(cè)量值,即,一直降低到0.08 Hz(或80 mHz)。

如果我們觀察低于10 Hz的模糊線條,可以通過以下方程

圖片

確認(rèn)0.6 fA/√Hz。使用這個(gè)公式計(jì)算電流噪聲并不全錯(cuò)。在一階近似值中,仍然顯示部件的低頻率電流噪聲行為,因?yàn)檫@個(gè)電流噪聲密度值是通過直流輸入偏置電流獲取的。但是,在高頻率下,電流噪聲不符合此公式。

圖片

圖8.AD8605的RTI電流噪聲。

在更高頻率下,DUT電流噪聲比電阻電流熱噪聲更具主導(dǎo)性,電阻熱噪聲可以忽略。圖9顯示了在10GΩ條件下折算到FET型運(yùn)放輸入端的噪聲值,使用圖3所示的設(shè)置測(cè)量得出。似乎大部分精密放大器的典型的噪聲性能為:100 kHz時(shí)100 fA/√Hz。

圖片

圖9.所選的ADI放大器的RTI電流噪聲。

當(dāng)然也存在一些例外:LTC6268/LTC6269在100kHz的電流噪聲為5.6fA/√Hz。這些部件非常適合高速TIA應(yīng)用,這些應(yīng)用都需要高帶寬、低輸入電容和飛安級(jí)偏置電流。

圖片

圖10.LTC6268的折合輸入端電流噪聲。

這是FET輸入放大器中的所有電流噪聲嗎?

T高源阻抗應(yīng)用中的總輸入電流噪聲主要來自4個(gè)電流噪聲源,到目前為止,我們已經(jīng)介紹了2個(gè)。帶有主要噪聲源的簡(jiǎn)化TIA放大器等效電路如下方的圖11所示。MT-050是一個(gè)很好的介紹運(yùn)算放大器噪聲源的參考文檔。

圖片

圖11.帶有主要噪聲源的簡(jiǎn)化TIA放大器。

來自FET輸入放大器(in_dut)的電流噪聲

電流噪聲的圖譜由放大器輸入級(jí)拓?fù)錄Q定。一般來說,電流噪聲在低頻率下保持平坦,但會(huì)隨著頻率升高而變大。參見圖8。最后,當(dāng)放大器在更高頻率下耗盡增益時(shí),噪聲以–20 dB/dec滾降。

來自電阻 (in_R)的電流熱噪聲

這可以使用電阻 en_R 的熱噪聲除以電阻值R的阻抗得出。1 MΩ產(chǎn)生約128 fA/√Hz,10 GΩ產(chǎn)生1.28 fA/√Hz。

圖片

電阻的熱電壓噪聲在頻率范圍內(nèi)非常平坦,直到電容以–20 dB/dec滾降。圖5顯示在10 mHz至1 Hz范圍之間這種行為的表現(xiàn)。

來自傳感器 (in_source)的電流噪聲

傳感器也會(huì)產(chǎn)生電流噪聲,我們必須接受這個(gè)現(xiàn)實(shí)。在頻率范圍內(nèi),噪聲可能表現(xiàn)為各種圖譜。例如:光電二極管存在來自光電流 IP的散粒噪聲Isn, 以及來自分流電阻的暗電流ID和約翰遜噪聲 Ijn。

圖片

來自放大器電壓噪聲本身的電流噪聲

來自放大器電壓噪聲的電流噪聲被稱 enC 噪聲,在Horowitz和Hill撰寫的《The Art of Electronics》(中文譯本為《電子學(xué)》)中有過詳細(xì)描述。與由電阻轉(zhuǎn)換為電流噪聲的電阻熱噪聲類似,放大器電壓噪聲 en_dut由總輸入電容轉(zhuǎn)換成電流噪聲,其中包括傳感器電容、板雜散電容和放大器輸入電容。

圖片

在第一階,我們使用

圖片

從這個(gè)公式,我們可以看出三點(diǎn)。第一,電流噪聲隨頻率增加而升高,另一個(gè)電流噪聲成分隨頻率升高而增大。第二,放大器的輸入電壓噪聲越大,電流噪聲也越大。第三,總輸入電容越大,電流噪聲也越大。由此得出電流噪聲的品質(zhì)因數(shù)enC,其中放大器的電壓噪聲和總輸入電容是決定這個(gè)指標(biāo)的關(guān)鍵要素。

TIA應(yīng)用的電流噪聲圖形(忽略DUT電流噪聲)如圖12所示。平坦部分主要是電阻噪聲

圖片

電容導(dǎo)致的電流噪聲為

圖片

以20 dB/dec的斜率增加。從兩個(gè)等式可以得出交越點(diǎn)的計(jì)算公式

圖片

圖片

圖12. 頻率范圍內(nèi)的enC 噪聲。

根據(jù) Cin, enC 可能高于或低于DUT電流噪聲。對(duì)于反相放大器,例如TIA應(yīng)用, Cdm沒有被自舉;即:

圖片

例如,在100 kHz時(shí),LTC6244的Ccm = 2.1 pF, Cdm = 3.5 pF,  en = 8 nV/√Hz ,對(duì)應(yīng)的enC 電流噪聲為

圖片

這是遠(yuǎn)低于80 fA/√Hz DUT電流噪聲

但是,連接光電二極管時(shí),公式中會(huì)額外增加一個(gè)C-source 或 Cpd,然后需要重新計(jì)算電流噪聲。即便Cpd 僅僅有16pF的電容值,也會(huì)產(chǎn)生與DUT相等電流噪聲。低速大面積光電二極管會(huì)存在100 pF至1 nF的PD等效電容,高速小區(qū)域光電二極管的PD等效電容為1 pF至10 pF。

總結(jié)

工程師和經(jīng)驗(yàn)豐富的電路設(shè)計(jì)人員都深知,在CMOS和JFET輸入放大器中,電流噪聲會(huì)隨頻率增高而增高,但由于關(guān)于此領(lǐng)域的資料過少,或者制造商提供的信息不全,許多工程師很難了解其原因。本文的目標(biāo)是幫助大家理解電流噪聲從低頻到高頻的特性,同時(shí)介紹一種可以重復(fù)測(cè)量運(yùn)放電流噪聲的方法。

附錄

在高阻抗環(huán)境中,要測(cè)量得出FET輸入具備10 GΩ阻抗噪聲,需要注意環(huán)境和細(xì)節(jié)。

在典型的單個(gè)放大器引腳布局中,Pin3 (Vin+)鄰近Pin4 (V–)。沒有保護(hù)環(huán)時(shí),板的布局非常重要。掃描電源時(shí),會(huì)發(fā)現(xiàn)輸出端存在明顯的直流偏移。10 GΩ SMD最開始與V–(圖13中的R10)并聯(lián)焊接,所以焊錫膏泄漏不可接受。所以,10 GΩ SMD被移動(dòng)到另一個(gè)位置(R8),由此消除泄漏。ADA4530-1 靜電計(jì)級(jí)放大器,在85°C時(shí)為20 fA)的數(shù)據(jù)手冊(cè)顯示了所有與焊錫膏選擇、污染、濕度影響有關(guān)的預(yù)防錯(cuò)誤,以及其他與高阻抗測(cè)量有關(guān)的有趣細(xì)節(jié)。數(shù)據(jù)手冊(cè)和用戶指南UG-865,以及電路筆記 CN-0407都非常值得研讀。

圖片

圖13.測(cè)量設(shè)置。

具有高阻抗、不隔音的器件非常易受擦電效應(yīng)、壓電效應(yīng)或微音效應(yīng)影響。有一天,我的鑰匙偶然落地,其設(shè)施設(shè)備顯示的噪聲譜在人可聽到的頻率范圍內(nèi)(1 kHz和以上)出現(xiàn)了一個(gè)尖峰。我本不認(rèn)為在高阻抗FET運(yùn)放前掛一個(gè)10GΩ電阻的噪聲測(cè)量電路會(huì)對(duì)聲音很敏感。但為了再次確認(rèn)一下,我吹了個(gè)口哨。在1 kHz至2 kHz之間測(cè)量到了一個(gè)尖峰。即使在有大量平均值的情況下,一聲尖銳口哨也會(huì)令SR785的CRT屏幕上出現(xiàn)噪聲尖峰。CN-0407中提到的氣密玻璃電阻是消除壓電/摩擦電效應(yīng)的更好選擇。

為了確認(rèn),我使用筆記本電腦的麥克風(fēng)測(cè)量實(shí)驗(yàn)室環(huán)境噪聲,使用MATLAB?處理數(shù)據(jù),最后發(fā)現(xiàn)噪聲與測(cè)量結(jié)果非常對(duì)應(yīng)。結(jié)果顯示,在768 Hz時(shí)出現(xiàn)噪聲尖峰,其他頻率如圖14所示。罪魁禍?zhǔn)资蔷嚯x工作臺(tái)幾米遠(yuǎn)的大型空調(diào)管。為了確定噪聲不是來源于我的筆記本電腦,我選擇進(jìn)入公用電話間這個(gè)最安靜的地方采集噪聲數(shù)據(jù)。結(jié)果未捕獲之前在768 Hz位置上的噪聲尖峰。其他頻率的噪聲尖峰也至少低了100倍。

圖片

圖14.實(shí)驗(yàn)室噪聲。

圖片

圖15.電話亭噪音。

圖片

圖16.折合輸出端噪聲電壓密度,無隔音屏障。

圖片

圖17.折合輸出端噪聲電壓密度,有隔音屏障。

要衰減可聽噪聲,可以使用Temptronix盒。此盒已經(jīng)熱隔離,內(nèi)部不存在大量氣流。我只需要它能夠隔離足夠的聲音,以免麥克風(fēng)的聲音效果進(jìn)入測(cè)量結(jié)果。它確實(shí)起到了這樣的作用。參見圖16和圖17。

關(guān)于儀器儀表的特定問題

FET輸入放大器具有pA級(jí)的輸入偏置電流。10 pA通過10 GΩ電阻產(chǎn)生的失調(diào)電壓體現(xiàn)在放大器的輸出端也只有大約100 mV。SR785具有交流耦合特性,可以去除此直流偏置,并在–50 dB V峰值(3.2 mV峰值)的最佳量程范圍內(nèi)測(cè)量輸出噪聲。但是,交流耦合特性會(huì)影響到不足1 Hz的頻率,導(dǎo)致難以確定平坦的12.8 μV/√Hz頻率范圍和讀取到3 dB的滾降轉(zhuǎn)折點(diǎn)。必須使用直流耦合,但是直流耦合不能使用儀器儀表中最佳的靈敏度范圍。1 mHz無源濾波器由兩個(gè)串連270 μF有極性電容(135 μF電容)和一個(gè)1 MΩ電阻構(gòu)成,被置于DUT和SR785的輸出之間。由于電容的長導(dǎo)線會(huì)產(chǎn)生更大的電流環(huán)路面積,這會(huì)導(dǎo)致SR785 CRT 屏幕在20kHz頻率下的諧波產(chǎn)生的磁場(chǎng)干擾到此電流環(huán)路,從而產(chǎn)生輻射干擾噪聲。。由于磁場(chǎng)從本質(zhì)上呈三維特性,所以改變無源濾波器盒的角度以及旋轉(zhuǎn)它可以解決此問題。注意查看圖18中呈角度的藍(lán)色盒子。簡(jiǎn)直屬于E& M黑魔法!

圖片

圖18.旋轉(zhuǎn)的過濾器盒對(duì)磁場(chǎng)的靈敏度較低。



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉