ADC不可忽略的交調(diào)失真因素
二階和三階交調(diào)截點的概念對ADC無效,因為,在這種情況下,失真積的變化不可預(yù)測(作為信號幅度的函數(shù))。ADC并不是逐漸開始壓縮接近滿量程的信號 (不存在1dB壓縮點);一旦信號超過ADC輸入范圍,ADC就會充當(dāng)硬限幅器,從而因削波而突然產(chǎn)生數(shù)量極大的失真。另一方面,對于遠遠低于滿量程的信號,失真底保持相對穩(wěn)定,不受信號電平影響,如圖3所示。
圖3中的IMD曲線分為三個區(qū)域。對于低電平輸入信號,IMD積保持相對穩(wěn)定,不受信號電平的影響。這就意味著,當(dāng)輸入信號增加1dB時,該信號與IMD電平的比值也會增加1dB.
當(dāng)輸入信號處于ADC滿量程范圍的幾dB之內(nèi)時,IMD可能開始增加(但在設(shè)計優(yōu)良的ADC中可能不會如此)。出現(xiàn)這種現(xiàn)象的確切電平取決于具體的 ADC--有些ADC在其滿量程輸入范圍內(nèi),其IMD積不會顯著增大,但多數(shù)ADC會。當(dāng)輸入信號繼續(xù)增加并超過滿量程范圍時,ADC應(yīng)充當(dāng)理想的限幅器,IMD積將變得非常大。出于對此類原因的考慮,ADC并無二階和三階IMD交調(diào)截點額定值。需要注意的是,DAC實際上存在同樣的情況。在兩種情況下,單音或多音SFDR(無雜散動態(tài)范圍)額定值是廣受認可的數(shù)據(jù)轉(zhuǎn)換器失真性能的衡量指標(biāo)。
多音無雜散動態(tài)范圍
通信應(yīng)用通常需要測量雙音和多音SFDR.信號音數(shù)量越多,越接近蜂窩電話系統(tǒng)(如AMPS或GSM)的寬帶頻譜。圖4所示為AD944414位80-MSPSADC的雙音交調(diào)性能。兩個輸入音的頻率分別為69.3MHz和70.3MHz,位于第二奈奎斯特區(qū)。
因此,混疊音出現(xiàn)在9.7MHz和10.7MHz,位于第一奈奎斯特區(qū)。圖4同時顯示了所有混疊IMD積的位置。高SFDR會增強接收器在有大信號時捕獲小信號的能力,并防止小信號被大信號的交調(diào)積掩蓋。圖5所示為AD9444雙音SFDR(為輸入信號幅度的函數(shù)),其中,兩個音的輸入頻率相同。
總結(jié)
交調(diào)失真(IMD2、IMD3)和交調(diào)截點(IP2、IP3)是混頻器、LNA、增益模塊、放大器等射頻元件的常用規(guī)格參數(shù)。通過冪級數(shù)展開來模擬這些器件的非線性度,可以基于交調(diào)截點IP2和IP3來預(yù)測各種信號幅度的失真電平。與放大器和混頻器不同,ADC失真(尤其是低電平信號)并不適用簡單的冪級數(shù)展開模型,因此,交調(diào)截點IP2和IP3無法用于預(yù)測失真性能。另外,當(dāng)輸入信號超過滿量程范圍時,ADC將充當(dāng)理想的限幅器,而放大器和混頻器一般充當(dāng)軟限幅器。
盡管存在這些差異,但在通信應(yīng)用中,了解ADC的雙音IMD性能至關(guān)重要。較好的數(shù)據(jù)手冊會針對多種輸入信號頻率和幅度提供這種數(shù)據(jù)。除此以外,ADIsimADCTM程序可用于評估各種ADC在系統(tǒng)應(yīng)用要求的具體頻率和幅度下的性能。ADIsimADC程序充當(dāng)虛擬評估板的作用,可以從 ADI網(wǎng)站下載,同時還可下載針對IF采樣ADC的最新模型。該程序基于FFT引擎,可以精確地計算出單音和雙音輸入信號的SNR、SFDR和IMD值。
混頻器相關(guān)文章:混頻器原理
評論