新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 3D圖形芯片的算法原理分析

3D圖形芯片的算法原理分析

作者: 時間:2013-09-22 來源:網(wǎng)絡 收藏
bkit-text-stroke-width: 0px">  有了這個視錐體,就可以用它對已變換到眼睛坐標系下的場景進行選擇。這不外有三種情況,對于那些完全落在視椎臺之內(nèi)的物體,直接通過透視變換將其變換到屏幕坐標系下;對于那些完全落在視椎臺之外的物體不作進一步的處理而直接拋棄;對于那些與視椎臺的面相交的物體則應作裁剪處理,裁取其位于錐臺內(nèi)的部分并用透視變換將它們變換到屏幕坐標系下。在屏幕坐標系下,Z坐標將作為判斷物體面之間相互遮擋的唯一判據(jù)。

  注意,場景中的每個物體的每個三角形都要經(jīng)過以上處理過程。

  四、象素處理

  經(jīng)過以上一系列的變換之后,一個多邊形已變換到屏幕坐標系下。將一個屏幕多邊形在屏幕上繪制出來就是多邊形的象素處理過程,它包括光柵化、隱藏面消除、明暗處理。光柵化、隱藏面消除、明暗處理是整個圖形生成過程中最內(nèi)層的處理。他們是三個二維插值過程。光柵化是用屏幕空間三角形的頂點坐標插值,以求得三角形的邊所截取的三角形內(nèi)掃描線段的端點坐標,并進而求得所截掃描線段上的象素坐標。隱藏面消除則是通過對屏幕空間三角形頂點的深度值(Z坐標)進行插值,從而獲得三角形內(nèi)掃描線段上每個象素的深度值。明暗處理是用同樣的方法由頂點光強求得三角形內(nèi)掃描段上每個象素的光強。這三種處理的算法具有相同的數(shù)學表示形式,只需將坐標、深度或光強代入該方程就可以得到相應的結果。總之,場景的繪制過程可概括為:

  對場景中的每個物體的每個多邊形做幾何變換將其變換到屏幕空間;

  對多邊形內(nèi)的每一個掃描段求出其端點及其上每個象素的坐標;

  對掃描段上的每個象素做隱藏面消除處理及明暗處理。

1.光柵化

  光柵化處理通過插值求得三角形內(nèi)掃描段的x坐標的起點和終點。問題是何處是終點和起點?當使用實數(shù)坐標時在象素之內(nèi)的何處進行采樣,屏幕坐標是取整數(shù)還是保留小數(shù)精度?這些問題如果處理得不好,就會在多邊形之間產(chǎn)生孔洞,產(chǎn)生重疊的多邊形,這會在透明效果處理時產(chǎn)生嚴重問題。如果反走樣處理不精確,則會在帶有紋理的表面上產(chǎn)生紋理不連續(xù)現(xiàn)象。例如,如果對屏幕坐標取整,則屏幕多邊形的頂點將延伸或縮回到離它最近的象素,這樣多邊形的大小將發(fā)生微小的變化,而且不能用密集采樣進行反走樣處理,動畫中的“顫抖”現(xiàn)象便是由此而引起的。在象素內(nèi)何處采樣并不重要,重要的是對象素采樣的處理必須一致。

  2.隱藏面消除

  全屏幕Z-Buffer(深度緩存器)算法已成為圖形學事實上的標準隱藏面消除算法,他雖然簡單但存儲要求很高。Z-Buffer算法可看作是工作在三維屏幕空間。每一個象素有一個二維屏幕空間坐標( xs , ys )和由眼睛空間頂點的深度值插值而得到的z深度值。深度緩存器開始時被初始化為遠處裁剪平面的深度,對每一個象素比較其插值得到的深度值與已存儲在深度緩存中( xs , ys )處的值,如果該值小于存儲值,則新計算的象素更靠近觀察者。這時新計算的象素的明暗處理值將覆蓋幀緩存中的舊值,深度存儲器中的值也換成新計算的值。深度緩存器算法對場景數(shù)據(jù)庫組織及場景復雜性沒有限制。在處理復雜場景或物體時,應保證足夠的深度精度。

  3.明暗處理

  首先計算多邊形頂點的明暗參數(shù),然后在多邊形平面上進行插值。這樣繪制出的物體不但具有很強的三維立體感,而且消除了用于近似曲面的多邊形之間的公用邊所形成的不連續(xù)特征。實現(xiàn)這一處理方式的算法有兩種,一種稱作Gouraud明暗處理,一種稱作Phong明暗處理(均以發(fā)明者的名字命名)。這也是基于多邊形的繪制日益受歡迎的一個重要原因。Gouraud明暗處理的速度快,但不能產(chǎn)生精確的高光效果,通常用在對速度要求高的場合,如飛行模擬、交互式CAD應用等。Phong明暗處理可以生成高質量的圖像,但將耗費龐大的硬件資源。Gouraud明暗處理僅在多邊形的頂點使用局部反射光照模型計算光強,然后使用頂點處的光強通過插值求出多邊形內(nèi)



評論


相關推薦

技術專區(qū)

關閉