新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 解析ADC不同類型數(shù)字輸出及挑戰(zhàn) — 全方位學(xué)習(xí)模數(shù)轉(zhuǎn)換器(ADC)

解析ADC不同類型數(shù)字輸出及挑戰(zhàn) — 全方位學(xué)習(xí)模數(shù)轉(zhuǎn)換器(ADC)

作者: 時間:2012-12-08 來源:網(wǎng)絡(luò) 收藏

ADC不同類型數(shù)字輸出深解

在當(dāng)今的模數(shù)轉(zhuǎn)換器(ADC)領(lǐng)域,ADC制造商主要采用三類數(shù)字輸出。這三種輸出分別是:互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)、低壓差分信號(LVDS)和電流模式邏輯(CML)。每類輸出均基于采樣速率、分辨率、輸出數(shù)據(jù)速率和功耗要求,根據(jù)其工作方式和在ADC設(shè)計中的典型應(yīng)用方式進(jìn)行了論述。本文將討論如何實現(xiàn)這些接口,以及各類輸出的實際應(yīng)用,并探討選擇和使用不同輸出時需要注意的事項。此外還會給出關(guān)于如何處理這些輸出的一般指南,并討論各類輸出的優(yōu)劣。

基本知識

使用數(shù)字接口時,無論何種數(shù)字輸出,都有一些相同的規(guī)則和事項需要考慮。首先,為實現(xiàn)最佳端接,接收器(FPGA或ASIC)端最好使用真正的電阻終端。接收器端的反射可能會破壞系統(tǒng)的時序預(yù)算。使用CMOS和LVDS輸出時,如果系統(tǒng)中有多個ADC,不要使用來自某個ADC的DCO(數(shù)據(jù)時鐘輸出),否則可能導(dǎo)致時序錯誤以及接收器不適當(dāng)?shù)夭蹲綌?shù)據(jù)。在兩個ADC之間需要保持精確時序的I/Q系統(tǒng)中,這點尤其要注意。即使兩個ADC位于同一封裝中,也需要針對各ADC使用適當(dāng)?shù)腄CO輸出,從而保持精確的時序關(guān)系。另一個需要注意的重要參數(shù)是數(shù)據(jù)格式。必須確保ADC和接收器采用同一數(shù)據(jù)格式(二進(jìn)制補(bǔ)碼或偏移二進(jìn)制)。此外,數(shù)據(jù)轉(zhuǎn)換速度也很重要。隨著數(shù)據(jù)速率提高,接收器能夠正確捕捉數(shù)據(jù)的距離減小,原因是互連和電纜帶寬限制,以及由此引起的符碼間干擾等問題。這些只是為什么必須將互連視作傳輸線路的其中幾個原因。以這種方式處理互連并了解傳輸線路的特性很重要。當(dāng)數(shù)據(jù)速率提高時,以這種方式了解互連變得更加重要。必須確保導(dǎo)線尺寸正確,并且信號層與返回層之間的間距適當(dāng)。此外還必須選擇具有穩(wěn)定介電特性的電路板材料,使得走線特性在整個互連長度上的波動盡可能小。理想情況下,傳輸線路可以傳播到無窮遠(yuǎn)處,但在實際應(yīng)用中,這顯然是不可能的。集膚效應(yīng)、電介質(zhì)損耗和輻射損耗等因素全都會影響傳輸線路參數(shù),降低信號質(zhì)量。因此,必須以正確的物理參數(shù)適當(dāng)設(shè)計傳輸線路,并且確保發(fā)送器與接收器的阻抗匹配。這樣做能夠節(jié)省電能,并將最高質(zhì)量的信號傳輸給接收器。

關(guān)于CMOS,我們所需要了解的

使用CMOS輸出時,有多個方面需要考慮。首先考慮邏輯電平的典型開關(guān)速度(約1V/ns)、輸出負(fù)載(每個門約10pF)和充電電流(每路輸出約10mA)。應(yīng)當(dāng)采用盡可能小的容性負(fù)載,使充電電流最小。這可以利用盡可能短的走線僅驅(qū)動一個門來實現(xiàn),最好沒有任何過孔。此外還可以利用阻尼電阻來盡量降低充電電流。之所以必須將這些電流降至最小,是因為它們會迅速疊加。例如,一個四通道14位ADC的瞬態(tài)電流可能高達(dá)14 x 4 x 10 mA = 560 mA!串聯(lián)阻尼電阻有助于抑制如此大的瞬態(tài)電流,降低輸出瞬態(tài)效應(yīng)產(chǎn)生的噪聲,從而防止輸出在ADC中造成額外的噪聲和失真。

(電子工程專輯)
圖1. 帶阻尼電阻的CMOS輸出驅(qū)動器。

阻尼電阻和容性負(fù)載的時間常數(shù)應(yīng)小于輸出數(shù)據(jù)速率周期的大約10%。例如,如果使用采樣速率為80 MSPS的ADC,各CMOS輸出端的容性負(fù)載為10 pF,則時間常數(shù)應(yīng)為12.5 ns的大約10%,即1.25 ns。因此,阻尼電阻R可以設(shè)置為100Ω,這個阻值很容易獲得,并且滿足時間常數(shù)條件。選擇更大的R值可能會降低輸出數(shù)據(jù)建立時間性能,并干擾接收器端正常的數(shù)據(jù)捕捉。ADC CMOS輸出端的容性負(fù)載只能是單門負(fù)載,無論如何都不應(yīng)直接連接到高噪聲數(shù)據(jù)總線。要連接到數(shù)據(jù)總線,應(yīng)使用一個中間緩沖寄存器,從而將ADC CMOS輸出端的負(fù)載降至最低。隨著CMOS輸出的數(shù)據(jù)速率提高,瞬態(tài)電流也會增大,導(dǎo)致更高的功耗。CML的優(yōu)點是:因為數(shù)據(jù)的串行化,所以對于給定的分辨率,它需要的輸出對數(shù)少于LVDS和CMOS驅(qū)動器。JESD204B接口規(guī)范所說明的CML驅(qū)動器還有一個額外的優(yōu)勢,因為當(dāng)采樣速率提高并提升輸出線路速率時,該規(guī)范要求降低峰峰值電壓水平。

ADC設(shè)計挑戰(zhàn):從高性能轉(zhuǎn)向低功耗

新的應(yīng)用需求不斷推動模擬技術(shù)的發(fā)展:性能越來越高,集成度不斷提高。ADC產(chǎn)品作為模擬IC的重要成員,在符合上述發(fā)展的趨勢下,還存在自身的特點。

當(dāng)使用“巧克力”手機(jī)時,不用按鍵只用輕觸那泛著深紅色光的區(qū)域,你是否知道電容感應(yīng)技術(shù)改變了你的體驗;當(dāng)看到那小小的騎車機(jī)器人“村田頑童”可以前進(jìn)、倒退、爬坡并且停而不倒時,你是否知道其中使用了多種傳感器以檢測各個方向的傾斜角度和探測道路狀況;當(dāng)你驚嘆殘疾人可以自如地控制假肢完成復(fù)雜動作時,你是否知道與假肢相連的探測器可以檢測人體肌肉的最細(xì)微運動從而實現(xiàn)對假肢的控制;也許你并沒有留意到用手機(jī)通話時顯示屏?xí)詣雨P(guān)閉以便降低功耗,這是手機(jī)檢測到顯示屏被物體(例如耳朵)遮住時的操作……所有這些都表明:用戶體驗推動半導(dǎo)體和技術(shù)創(chuàng)新的進(jìn)步,并在同時對模擬IC的性能提出更高要求。

12.jpg

同時,電子器件的集成度越來越高,例如AD9271在單一芯片上集成了一個完整的8通道超聲接收器,其中的一個通道就包含低噪聲(LNA)、可變增益(VGA)、抗混疊濾波器(AAF)和12位 ADC。雖然集成是大趨勢,但是還需要考慮成本,客戶需要,技術(shù)要求,工藝發(fā)展等諸多因素。大中國區(qū)資深業(yè)務(wù)經(jīng)理周文勝說,“當(dāng)性能指標(biāo)要求特別高時,采用集成的方案并不明智;市場上需要什么樣的芯片,芯片供應(yīng)商就應(yīng)該為實現(xiàn)這個系統(tǒng)去做一些相應(yīng)的設(shè)計,的‘智能分割’概念就是強(qiáng)調(diào)哪些功能模塊應(yīng)該集成,哪些功能模塊要分開放,最終使設(shè)計達(dá)到最符合客戶的要求,也符合技術(shù)要求。把所有的芯片集成在一起,當(dāng)工藝都一樣時,整體BOM可以降低;但當(dāng)各芯片工藝不一樣時,如果硬要把它們集成在一起可能會造成整個BOM上升?!?/P>

模數(shù)轉(zhuǎn)換器(ADC)作為模擬IC的一種,也同樣順應(yīng)上述模擬IC的發(fā)展趨勢,但是它還遵循自身發(fā)展的規(guī)律。從最初的11位分辨率、50 kSps采樣速率和500 W功耗的SAR型ADC到現(xiàn)在的16位分辨率、1MSps采樣速率并且僅7 mW功耗的ADC AD7980, ADC的性能已經(jīng)取得了巨大進(jìn)步?,F(xiàn)有ADC存在7種結(jié)構(gòu):falsh, half-flash, folding, SAR, pipelined, sigma-delta和未知結(jié)構(gòu)。其中piplined和未知結(jié)構(gòu)具有最佳的整體性能,所以它們非常適合例如無線收發(fā)器應(yīng)用和軍用等高性能要求的應(yīng)用;SAR ADC具有最寬的采樣速率,雖然它不是最快的,但由于低成本和低功耗使其很受歡迎。Sigma-delta ADC具有最高的分辨率,但是采樣速度較低,從kSps到MSps;而flash ADC由于其并行結(jié)構(gòu)具有最高采樣速率可達(dá)GSps,但是由于非線性使其分辨率限制在8位以內(nèi)。

在進(jìn)行ADC性能比較時通常使用品質(zhì)因數(shù):P=2B×fs和F=(2B×fs)/Pdiss,其中B是SNR比特數(shù),fs是采樣速率;Pdiss是功耗。文獻(xiàn)1認(rèn)為,在開發(fā)高功率效率的ADC設(shè)計上取得了顯著進(jìn)步,但是,ADC的分辨率和速度的乘積P在1993年~1999年的6年中幾乎沒有進(jìn)步。文獻(xiàn)[2]針對4家主要IC制造商(, Maxim, NS和TI)的ADC產(chǎn)品的3個通用性能指標(biāo)(采樣速率、分辨率和功耗)分析后認(rèn)為:上述P并不是恒定的,而是在低采樣速率下部分P有一些改善;在高采樣速率下部分P有一定降低(見圖1)。

Sigma-delta和flash轉(zhuǎn)換器是上述7中結(jié)構(gòu)中僅有的F隨時間降低的兩種結(jié)構(gòu)。這兩種ADC針對特定要求,只有較窄的應(yīng)用范圍,它們都需要犧牲更多的功耗用于實現(xiàn)更高性能,這導(dǎo)致了F的降低。余下的SAR, pipelined等5種結(jié)構(gòu)滿足速度和分辨率的中等應(yīng)用要求,因而能獲得更高的F。二十多年來,ADC技術(shù)的發(fā)展一直被新應(yīng)用推動,從而促進(jìn)P的增加。雖然UWB,OFDM和雷達(dá)系統(tǒng)等應(yīng)用推動ADC性能極限發(fā)展,ADC設(shè)計的主要挑戰(zhàn)已經(jīng)從性能擴(kuò)展轉(zhuǎn)向降低功耗,這一挑戰(zhàn)在移動通信和SDR應(yīng)用中尤為突出。

模擬電路文章專題:模擬電路基礎(chǔ)

電子管相關(guān)文章:電子管原理


霍爾傳感器相關(guān)文章:霍爾傳感器工作原理


霍爾傳感器相關(guān)文章:霍爾傳感器原理


評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉