電能計量IC配合閃存單片機(jī)實現(xiàn)靈活創(chuàng)新的電表設(shè)計
數(shù)字計算模塊(例如有功功率、視在功率和RMS電流與電壓)的功能都是固定的,以固定頻率運行,具有固定的輸出精度。雖然這些器件可以良好地執(zhí)行它們的固定功能,但這種方案對于設(shè)計師來說不夠靈活。
圖1a 典型的基于ROM的電表設(shè)計
圖1b 消除電能計量IC和閃存MCU之間的界線
以前,IC制造商只提供基于ROM的電能計量IC作為執(zhí)行這些功能的開源解決方案;現(xiàn)在,他們以△-∑可配置閃存設(shè)計的形式提供解決方案。本文介紹了一個完整的電表設(shè)計示例,使用大約7 KB的程序字來實現(xiàn)完整的三相電表IC。該設(shè)計由中斷驅(qū)動,僅使用50%的中斷處理時間(系統(tǒng)的電源頻率為60 Hz,每個周期進(jìn)行128次采樣)。在130μs的時間窗中,大約65μs的時間用于全部三相的計算,包括失調(diào)電壓、增益和相電壓的校準(zhǔn),以及LSB的調(diào)整。高精度電表設(shè)計的功率輸出寄存器最高需要48位,所以在低成本的8位單片機(jī)(MCU)上執(zhí)行這種數(shù)學(xué)計算并非輕而易舉。這種閃存方案具有很大的靈活性,相比基于ROM的電表IC具有很多優(yōu)點,本文將對此進(jìn)行介紹。
基于ROM的電表設(shè)計需要依靠外部存儲器進(jìn)行電表校準(zhǔn),并智能加載狀態(tài)機(jī),這是一種成本較高的兩階段方案。信號流的第三個階段必須將校準(zhǔn)常量裝入固定功能的電能計量IC中。通過將基于ROM的AFE中的計算功能與基于閃存的中央MCU相結(jié)合,可以省去其中的一個階段。電表校準(zhǔn)算法和常量可以全部包含在一個階段中,這有助于減少IC數(shù)量和降低系統(tǒng)成本。
電表精度要求可靠的模擬性能
在做出關(guān)于計算和電表校準(zhǔn)的設(shè)計決定之前,設(shè)計師必須確定模擬設(shè)計是可靠的。系統(tǒng)的模擬和ADC性能最終會限制電表的整體精度。在設(shè)計趨勢的推動下,分流電流和信號越來越小,所以ADC噪聲較低、分辨率較高的電能計量IC會更符合市場的需求。要開發(fā)符合IEC標(biāo)準(zhǔn)的電表(包括0.5和0.1級電表),低噪聲、串?dāng)_可忽略、具有優(yōu)良線性度的16位雙通道ADC會是一個堅實的起點。
Microchip Technology的MCP3909電能計量IC是一款△-∑器件,特別針對符合以上條件的電能計量應(yīng)用而設(shè)計,它包含有靈活的數(shù)字模塊和通信通路。該IC的兩個板載16位模數(shù)轉(zhuǎn)換器的信噪失真比(SINAD)為82 dB,支持遠(yuǎn)超出IEC要求的動態(tài)范圍測量。該IC的板載PGA(增益可達(dá)32 V/V)支持如下面所示的信號大小和測量誤差精度。此外,器件還允許設(shè)計師控制ADC和乘法器輸出,以及濾波器輸入。
評論