優(yōu)化白光LED背光應用效率
電荷幫浦的基本原理
電容是存儲電荷或電能,并按預先確定的速度和時間放電的裝置。如果一個理想的電容以理想的電壓源VG進行充電(見圖1a),將依據(jù)Dirac電流脈波函數(shù)立即存儲電荷(圖1b)。存儲的總電荷數(shù)量按以下方式計算︰ Q = CVG
實際的電容具有等效串聯(lián)阻抗(ESR)和等效串聯(lián)電感(ESL),兩者都不會影響到電容存儲電能的能力。然而,它們對開關電容電壓轉換器的整體轉換效率有很大的影響。實際電容充電的等效電路如圖1c所示,其中RSW是開關的電阻。充電電流路徑具有串行電感,透過適當?shù)慕M件布局設計可以降低這個串行電感。
一旦電路被加電,將產生指數(shù)特性的瞬態(tài)條件,直到達到一個穩(wěn)態(tài)條件為止。電容的寄生效應限制峰值充電電流,并增加電荷轉移時間。因此電容的電荷累積不能立即完成,這意味著電容兩端的初始電壓變化為零。電荷幫浦就利用了這種電容特性,如圖2a所示。
電壓變換在兩個階段內實現(xiàn)。在第一個階段期間,開關S1和S2關閉,而開關S3和S4打開,充電到輸入電壓:
VC1+ VC1- = VC1+ = VIN
VC1+ ─ VC1- = VOUT ─ VIN = VIN →VOUT = 2VIN
在第二個階段,開關S3和S4關閉,而S1和S2打開。因為電容兩端的電壓降不能立即改變,輸出電壓突變到輸入電壓值的兩倍︰使用這種方法可以實現(xiàn)電壓的倍壓。開關訊號的工作周期通常為50%,這通常能產生最佳的電荷轉移效率。以下讓我們更詳細地了解電荷轉移過程以及開關電容轉換器寄生效應如何影響其工作。
圖2b中顯示了開關電容電壓倍壓器的穩(wěn)態(tài)電流和電壓波形。根據(jù)功率守恒的原理,平均的輸入電流是輸出電流的兩倍。在第一階段,充電電流流入到C1。該充電電流的初始值決定于電容C1兩端的初始電壓、C1的ESR以及開關的電阻。在C1充電后,充電電流呈指數(shù)級地降低。充電時間常數(shù)是開關周期的幾倍,更小的充電時間常數(shù)將導致峰值電流增加。在這個時間內,輸出電容C hold提供負載電流線性放電的電量,放電量等于︰
在第二階段,C1+連接到輸出,放電電流(電流大小與前面的充電電流相同)透過C1流到負載。在這個階段,輸出電容電流的變化大約為2IOUT。盡管這個電流變化應該能產生一個輸出電壓變化為2 Iout ESR C hold,使用低ESR的陶瓷電容使得這種變化可以忽略不計。此時,CHOLD按下面的電量線性電位充電︰如此一來,電荷幫浦的輸出電壓可以用以下的等式模仿︰
VOUT = 2VIN ─ Iout Rout
總之,因為陶瓷電容低的ESR以及高的開關頻率,輸出漣波以及輸出電壓降取決于開關電阻。利用更多的開關和電容可以實現(xiàn)附加的電壓轉換。圖3展示了使用電容的這個特性的電路。同樣的,電壓轉換在兩個階段內完成。在第一個階段,開關S1到S3關閉,而開關S4到S8打開。因此C1和C2并聯(lián),假設C1等于C2,輸出電容CHOLD提供輸出負載電流。隨著這個電容的放電,輸出電壓降低到期望的輸出電壓以下,第二個階段是被激活來將輸出電壓增高到這個值以上。在第二階段,C1和C2并聯(lián),連接在VIN和VOUT之間。開關S4到S7關閉,而S1到S3和S8打開。因為電容兩端的電壓降并不能突變,輸出電壓跳變到輸入電壓值的1.5倍︰
電壓升壓是透過以下的模式完成︰透過關閉S8并保持S1到S7打開,電壓轉換可以獲得1倍的增益。
脈波頻率調制(PFM)方案
圖4種介紹了一種簡化的PFM調壓方案,該方案利用許多個增益。下調的輸出電壓透過PUMP/SKIP比較器與1.2V的電壓基準比較。PUMP/SKIP比較器輸出電壓在啟動時線性上升,提供軟啟動功能。當輸出電壓超過期望的極限,組件不會開啟,消耗的電源電流將很小。在這種空閑狀態(tài)的期間,輸出電容提供輸出負載電流。隨著這個電容不斷放電以及輸出電壓降低到期望的輸出電壓以下,電荷幫浦被激活直到輸出電壓再次達到高于這個值。
在輕負載下,PFM調節(jié)架構的主要優(yōu)勢是很明顯的。通常透過輸出電容提供負載電能。電源電流非常低,輸出電容只需要偶爾透過電荷幫浦進行再次充電。
總之,調壓電荷幫浦在一個寬的輸入范圍內不能維持高的效率,因為輸入-輸出電流比根據(jù)基本的電壓轉換進行調節(jié),任何比輸入電壓乘以電荷幫浦增益所得的值更低的輸出電壓將導致轉換器內額外的功耗,并且效率會成比例地降低。
轉換器根據(jù)輸入/輸出比例改變增益的能力允許在整個輸入電壓范圍內完成最優(yōu)秀的效率。理想的情況是,增益應該是線性式變化?,F(xiàn)實中,給予固定的電容和開關數(shù)量,只可能達到有限的增益配置。
在圖4中,輸入電壓被調節(jié),并被饋入到三個比較器的正向結點。比較器的所有反向結點連接到輸出電壓。根據(jù)輸入-輸出電壓比,比較器的輸出提供帶有一個3位字的增益控制電路,增益控制電路用于選擇最小的增益G,這樣就可以獲得期望的電壓轉換。然而,在白光LED應用中,選擇正確的增益G不僅僅根據(jù)輸入和輸出電壓。
高整合度電荷幫浦雙顯LED驅動器
以NS的LM27965電荷幫浦雙顯LED驅動器為例,D1A-5A或D1B-D3B輸出可以連接在一起以較高的電流來驅動一個或兩個LED。在這樣的配置中,所有的五個并行電流輸出可以驅動一個LED。應該選擇設定用于D1A-5A的LED電流,這樣可以設定每個輸出電流為期望的總LED電流的20%。例如,如果60mA是期望中的單LED驅動電流,應該選擇合適的RSET,這樣透過每個電流吸收端的輸入電流為12mA。可提供的二極管輸出電流、最大的二極管電壓以及電氣參數(shù)表中提供的所有其它參數(shù)與標準的5-LED應用電路相同。
在較高的輸入電壓條件下,LM27965工作在直通模式(Pass-Mode),允許輸出電壓跟蹤輸入電壓。隨著輸入電壓不斷降低,Dxx管腳上的電壓也會下降(VDXX = VPOUT VLEDx)。一旦任何已激活的Dxx管腳達到接近175mV的電壓時,電壓幫浦將切換到3/2x的增益。這種切換確保不會因為在LED兩端沒有足夠的電壓余量而影響到流過LED的電流。第一組和第二組輸出在每個Dxx管腳上利用了片上的LED正向電壓檢測功能以優(yōu)化電荷幫浦增益,實現(xiàn)最大的效率。由于檢測電路的特性,因此如果在正常操作期間將使用到任何一個LED組,不建議將任何DxA (D1A-D4A)或DxB (D1B-D2B)的管腳懸空。如果將DxA和/或DxB的管腳懸空,將會在整個VIN范圍內迫使電荷幫浦進入3/2x模式。
如果D5A未使用,建議將驅動器管腳接地,并將通用緩存器的EN5A位設置為0以確保正確的增益轉換。使用通用緩存器,D3B驅動器可以在工作中完全地開或關閉。激活二極管監(jiān)測電路并禁止驅動器。如果D3B沒有使用,建議將驅動器管腳接地,通用緩存器的EN3B位設置為0確保正確的增益轉換。
結論
使用開關電容比基于電感的開關方法具有某些優(yōu)勢,其中一個明顯的優(yōu)勢就是消除了電感以及相關的電磁設計問題。開關電容轉換器通常具有相對低的噪音和最小的輻射EMI。此外,應用電路很簡單,只需要幾個小電容。因為在沒有電感的情況下,最后的PCB組件高度通常比同等的開關轉換器更小。
評論